Skip to main content

Development of Dental Composites

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Nowadays, dental composite is the material of choice for direct restorations in anterior and posterior teeth. Since their commercialization in the 1960’s the development of dental composites has been an ongoing effort with key compositional changes related to fillers and resins but also curing characteristics. The aim of this chapter is to provide an overview of the development of dental composites for direct restorations. Roughly three major periods can be distinguished in the timeframe of their development so far: (1) mid 1960’s – late 1970’s with major changes in the curing characteristics (from self- and UV-cured to visible light-cured composites); (2) late 1970’ – mid 2000’s with various filler modifications (from macro- and micro-filled to hybrid and nano-filled) and (3) mid 2000’s – mid 2010’s with important resin modifications (from methacrylates to high molecular weight modified methacrylates, siloranes and self-adhesive composites).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Triethyleneglycoldimethacrylate.

  2. 2.

    Urethane dimethacrylate.

  3. 3.

    Ethoxylated bisphenol A dimethacrylate.

References

  1. WHO. Future use of materials for dental restoration: report of the meeting convened at WHO HQ, Geneva, Switzerland, 16–17 Nov 2009. 2010.

    Google Scholar 

  2. Bowen RL. Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of Bis-phenol and glycidyl acrylate. US Patents No. 3066112. 1962.

    Google Scholar 

  3. Bowen RL. Method of preparing a monomer having phenoxy and methacrylate groups linked by hydroxy glyceryl groups. United States Patents No. 3179623. 1965.

    Google Scholar 

  4. Bowen RL. Silica-resin direct filling material and method of preparation. United States Patents No. 3194783 and No. 3194784. 1965.

    Google Scholar 

  5. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105:97–116.

    Article  PubMed  Google Scholar 

  6. Lutz F, Phillips RW. A classification and evaluation of composite resin systems. J Prosthet Dent. 1983;50:480–8.

    Article  PubMed  Google Scholar 

  7. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6:302–18.

    Article  PubMed  Google Scholar 

  8. Phillips RW, Avery DR, Mehra R, Swartz ML, McCune RJ. Observations on a composite resin for class II restorations: three-year report. J Prosthet Dent. 1973;30:891–7.

    Article  PubMed  Google Scholar 

  9. Osborne JW, Gale EN, Ferguson GW. One-yer and two-year clinical evaluation of a composite resin vs. amalgam. J Prosthet Dent. 1973;30:795–800.

    Article  PubMed  Google Scholar 

  10. Santini A, Gallegos IT, Felix CM. Photoinitiators in dentistry: a review. Prim Dent J. 2013;2:30–3.

    Article  PubMed  Google Scholar 

  11. Dennison JB, Fan PL, Powers JM. Surface roughness of microfilled composites. J Am Dent Assoc. 1981;102:859–62.

    Article  PubMed  Google Scholar 

  12. Powers JM, Fan PL, Raptis CN. Color stability of new composite restorative materials under accelerated aging. J Dent Res. 1980;59:2071–4.

    Article  PubMed  Google Scholar 

  13. Raptis CN, Fan PL, Powers JM. Properties of microfilled and visible light-cured composite resins. J Am Dent Assoc. 1979;99:631–3.

    Article  PubMed  Google Scholar 

  14. Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27:29–38.

    Article  PubMed  Google Scholar 

  15. Young A, von der Fehr FR, Sonju T, Nordbo H. Fluoride release and uptake in vitro from a composite resin and two orthodontic adhesives. Acta Odontol Scand. 1996;54:223–8.

    Article  PubMed  Google Scholar 

  16. Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc. 2003;69:516–21.

    PubMed  Google Scholar 

  17. Schultz S, Rosentritt M, Behr M, Handel G. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials. Quintessence Int. 2010;41:e1–10.

    PubMed  Google Scholar 

  18. Leinfelder KF, Bayne SC, Swift EJ Jr. Packable composites: overview and technical considerations. J Esthet Dent. 1999;11:234–49.

    Article  PubMed  Google Scholar 

  19. Jin J, Takahashi R, Hickel R, Kunzelmann KH. Surface properties of universal and flowable nanohybrid composites after simulated tooth brushing. Am J Dent. 2014;27:149–54.

    PubMed  Google Scholar 

  20. Melander J, Dunn WP, Link MP, Wang Y, Xu C, Walker MP. Comparison of flexural properties and surface roughness of nanohybrid and microhybrid dental composites. Gen Dent. 2011;59:342–7. quiz 8-9

    PubMed  Google Scholar 

  21. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig. 2009;13:427–38.

    Article  PubMed  Google Scholar 

  22. Takahashi H, Finger WJ, Endo T, Kanehira M, Koottathape N, Komatsu M, et al. Comparative evaluation of mechanical characteristics of nanofiller containing resin composites. Am J Dent. 2011;24:264–70.

    PubMed  Google Scholar 

  23. Sideridou ID, Karabela MM, Vouvoudi E. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent Mater. 2011;27:598–607.

    Article  PubMed  Google Scholar 

  24. Finer Y, Santerre JP. The influence of resin chemistry on a dental composite's biodegradation. J Biomed Mater Res A. 2004;69:233–46.

    Article  PubMed  Google Scholar 

  25. Chen M-H. Update on dental nanocomposites. J Dent Res. 2010;89:549–60.

    Article  PubMed  Google Scholar 

  26. Stansbury JW. Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization. J Dent Res. 1992;71:1408–12.

    Article  PubMed  Google Scholar 

  27. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90:402–16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21:68–74.

    Article  PubMed  Google Scholar 

  29. Van Ende A, Mine A, De Munck J, Poitevin A, Van Meerbeek B. Bonding of low-shrinking composites in high C-factor cavities. J Dent. 2012;40:295–303.

    Article  PubMed  Google Scholar 

  30. Aleixo AR, Guiraldo RD, Fugolin AP, Berger SB, Consani RL, Correr AB, et al. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014;32:267–73.

    Article  PubMed  Google Scholar 

  31. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dent Mater J. 2007;26:149–55.

    Article  PubMed  Google Scholar 

  32. Marchesi G, Breschi L, Antoniolli F, Di Lenarda R, Ferracane J, Cadenaro M. Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater. 2010;26:947–53.

    Article  PubMed  Google Scholar 

  33. Baracco B, Perdigao J, Cabrera E, Ceballos L. Two-year clinical performance of a low-shrinkage composite in posterior restorations. Oper Dent. 2013;38:591–600.

    Article  PubMed  Google Scholar 

  34. Walter R, Boushell LW, Heymann HO, Ritter AV, Sturdevant JR, Wilder AD Jr, et al. Three-year clinical evaluation of a silorane composite resin. J Esthet Restor Dent. 2014;26:179–90.

    Article  PubMed  Google Scholar 

  35. Kucukyilmaz E, Savas S. Evaluation of different fissure sealant materials and Flowable composites used as pit-and-fissure sealants: a 24-month clinical trial. Pediatr Dent. 2015;37:468–73.

    PubMed  Google Scholar 

  36. Pinna R, Bortone A, Sotgiu G, Dore S, Usai P, Milia E. Clinical evaluation of the efficacy of one self-adhesive composite in dental hypersensitivity. Clin Oral Investig. 2015;19:1663–72.

    Article  PubMed  Google Scholar 

  37. Poitevin A, De Munck J, Van Ende A, Suyama Y, Mine A, Peumans M, et al. Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent Mater. 2013;29:221–30.

    Article  PubMed  Google Scholar 

  38. Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater. 2016;32:998–1006.

    Article  PubMed  Google Scholar 

  39. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. 2013;38:618–25.

    Article  PubMed  Google Scholar 

  40. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42:993–1000.

    Article  PubMed  Google Scholar 

  41. Miletic V, Pongprueksa P, De Munck J, Brooks NR, Van Meerbeek B. Curing characteristics of flowable and sculptable bulk-fill composites. Clin Oral Investig. 2017;21:1201–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Miletic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miletic, V. (2018). Development of Dental Composites. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics