Skip to main content

Constraint Equations of Inverted Kinematic Chains

  • Conference paper
  • First Online:
Computational Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 50))

Abstract

A lot of different kinematic chains have been investigated focusing on constraint equations, singularities, assembly modes and motion capabilities. The approach to obtain constraint equations via inverted chains however is rarely considered. We provide a detailed look on the constraint varieties of inverted chains, beginning with the basics of quaternion conjugation. The transformation of the Denavit- Hartenberg parameters needed for the quaternion conjugation is discussed in the paper. The quaternion conjugation is a fast way to obtain the variety corresponding to the inverted kinematic chain. Geometrically the conjugation is a reflection in the kinematic image space \(\mathbb {P}^7\) with respect to a line and a five- dimensional subspace. Some examples of constraint equations of kinematic chains and their inverted chains complete the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to space limitation this mapping cannot be explained in detail, but a comprehensive introduction can be found in [4] or [3].

  2. 2.

    The kinematic images of planar and spherical displacements subordinate completely to this description because both cases are obtained by three dimensional sub-spaces of \(\mathbb {P}^7\). The corresponding geometry of their image spaces and the algorithms to derive these geometries can be found in [1] p. 393ff. resp. [5] p. 60ff.

References

  1. Bottema, O., Roth, B.: Theoretical Kinematics, 1st edn. North-Holland Publishing Company, Amsterdam (1979)

    MATH  Google Scholar 

  2. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  3. Husty, M., Schröcker, H.P.: Kinematics and algebraic geometry. In: 21st Century Kinematics, pp. 85-123. Springer (2012)

    Google Scholar 

  4. Husty, M.L., Pfurner, M., Schröcker, H.P., Brunnthaler, K.: Algebraic methods in mechanism analysis and synthesis. Robotica 25, 661–675 (2007)

    Article  Google Scholar 

  5. Müller, H.R.: Sphärische Kinematik. VEB Deutscher Verlag der Wiss, Berlin (1962)

    MATH  Google Scholar 

  6. Nayak, A., Nurahmi, L., Wenger, P., Caro, S.: Comparison of 3-RPS and 3-SPR Parallel Manipulators Based on Their Maximum Inscribed Singularity-Free Circle, pp. 121-130. Springer International Publishing, Cham (2017)

    Google Scholar 

  7. Pfurner, M.: Analysis of spatial serial manipulators using kinematic mapping. Doctoral thesis, University Innsbruck (2006)

    Google Scholar 

  8. Pfurner, M., Schröcker, H.P., Husty Manfred, L.: Path planning in kinematic image space without the Study condition. In: Merlet, J.P., Lenarcic, J. (eds.) Advances in Robot Kinematics (2016). https://hal.archives-ouvertes.fr/hal-01339423

  9. Rad, T.D., Scharler, D., Schröcker, H.P.: The kinematic image of RR, PR and RP Dyads. In: arXive:1607.08119v1 [csRO], 27 Jul 2016

  10. Schadlbauer, J.: Algebraic methods in kinematics and line geometry. Doctoral thesis, University Innsbruck (2014)

    Google Scholar 

  11. Schadlbauer, J., Walter, D.R., Husty, M.L.: The 3-RPS parallel manipulator from an algebraic viewpoint. Mechanism Mach. Theory 75, 161–176 (2014)

    Article  Google Scholar 

  12. Selig, J., Husty, M.: Half-turns and line symmetric motions. Mechanism Mach. Theory 46(2), 156–167 (2011)

    Article  MATH  Google Scholar 

  13. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  14. Study, E.: Geometrie der Dynamen: die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  15. Walter, D.R., Husty, M.L.: On implicitization of kinematic constraint equations. Mach. Des. Res. 26, 218–226 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the FWF project I 1750-N26 “Kinematic Analysis of Lower-Mobility Parallel Manipulators Using Efficient Algebraic Tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred L. Husty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Stigger, T., Husty, M.L. (2018). Constraint Equations of Inverted Kinematic Chains. In: Zeghloul, S., Romdhane, L., Laribi, M. (eds) Computational Kinematics. Mechanisms and Machine Science, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-60867-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60867-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60866-2

  • Online ISBN: 978-3-319-60867-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics