Skip to main content

Viruses of Wine-Associated Yeasts and Bacteria

  • Chapter
  • First Online:
Biology of Microorganisms on Grapes, in Must and in Wine

Abstract

Stuck and sluggish fermentations are still a major problem for winemakers. While stuck fermentations can usually be characterized by high residual sugar contents at the end of the alcoholic fermentation, sluggish fermentations are accompanied by a low rate of sugar utilization. In both scenarios, malfermentations can be caused by a variety of factors, most of which lead to a decrease in the metabolism of the fermenting yeast strain, associated by a decrease in biomass production, cell viability, and/or fermentation rate (Bisson 1999). One such factor potentially causing a variety of oenological problems during wine fermentation is the production of toxic proteins, so-called killer toxins, by certain killer yeasts. Soon after the discovery of toxin-secreting killer strains in the wine yeast S. cerevisiae (Bevan and Makower 1963), it became evident that killer yeasts and killer toxins can cause severe stuck fermentations, particularly under conditions when yeast starter cultures become suppressed by wild-type killer strains present on the grapes (Bussey 1981; Young 1987; Heard and Fleet 1987; Vagnoli et al. 1993; Perez et al. 2001; Medina et al. 1997; Santos et al. 2011; de Ullivarri et al. 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW (2005) Bacteriophage classification. In: Kutter E, Sulakvelidze A (eds) Bacteriophages, biology and applications. CRC Press, Boca Raton, pp 67–89

    Google Scholar 

  • Ackermann HW, DuBow MS (1987) General properties of bacteriophages. In: Viruses of prokaryotes, vol 1. CRC Press, Boca Raton, pp 1–292

    Google Scholar 

  • Arendt EK, Hammes WP (1992) Isolation and characterization of Leuconostoc oenos phages from German wines. Appl Microbiol Rev 37:643–646

    CAS  Google Scholar 

  • Arendt EK, Neve H, Hammes WP (1990) Characterization of phage isolates from a phage-carrying culture of Leuconostoc oenos 58 N. Appl Microbiol Biotechnol 34:220–224

    Article  CAS  Google Scholar 

  • Arendt EK, Lonvaud A, Hammes WP (1991) Lysogeny in Leuconostoc oenos. J Gen Microbiol 137:2135–2139

    Article  CAS  PubMed  Google Scholar 

  • Bartowsky EJ, Borneman AR (2011) Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl Microbiol Biotechnol 92:441–447

    Article  CAS  PubMed  Google Scholar 

  • Bazinet C, King J (1985) The DNA translocation vertex of dsDNA bacteriophage. Annu Rev Microbiol 39:109–129

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Murialdo H (1990) Bacteriophage lambda DNA: the beginning of the end. J Bacteriol 172:2819–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker B, Blum A, Gießelmann E, Dausend J, Rammo D, Müller NC, Tschacksch E, Steimer M, Spindler J, Becherer U, Rettig J, Breinig F, Schmitt MJ (2016) H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Sci Rep 6:31105. doi:10.1038/srep31105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betteridge A, Grbin P, Jiranek V (2015) Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation. Trends Biotechnol 33:547–553

    Article  CAS  PubMed  Google Scholar 

  • Bevan EA, Makower M (1963) The physiological basis of the killer character in yeast. Proc Int Congr Genet 1:202–203

    Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    CAS  Google Scholar 

  • Bon E, Delaherche A, Bilhère E, de Daruvar A, Lonvaud-Funel A, Le Marrec C (2009) Oenococcus oeni genome plasticity is associated with fitness. Appl Environ Microbiol 75:2079–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012) Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways. BMC Genomics 13:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breinig F, Sendzik T, Eisfeld K, Schmitt MJ (2006) Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci USA 103:3810–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruenn JA (2005) The Ustilago maydis killer toxins. In: Schmitt MJ, Schaffrath R (eds) Microbial protein toxins. Springer, Berlin, pp 157–174

    Google Scholar 

  • Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–222

    Article  PubMed  Google Scholar 

  • Bussey H (1981) Physiology of killer factor in yeast. Adv Microb Physiol 22:93–122

    Article  CAS  PubMed  Google Scholar 

  • Campbell AM (1962) Episomes. Adv Genet 11:101–146

    Google Scholar 

  • Carrau FM, Neirotti EN, Giogia O (1993) Stuck wine fermentation: effect of killer/sensitive yeast interactions. J Ferment Bioeng 76:67–69

    Article  CAS  Google Scholar 

  • Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–571

    Article  PubMed  CAS  Google Scholar 

  • Cavin JF, Prevost H, Divies C (1991) Prophage curing in Leuconostoc oenos by mitomycin C induction. Am J Enol Vitic 42:163–166

    CAS  Google Scholar 

  • Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67:3058–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comitini F, Ingeniis De J, Pep L, Mannazzu I, Ciani M (2004) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    Article  CAS  PubMed  Google Scholar 

  • Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CR, Silveira NFA, Fleet GH (1985) Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines. Appl Environ Microbiol 50:872–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Ullivarri MF, Mendoza LM, Raya RR (2014) Killer activity of Saccharomyces cerevisiae strains: partial characterization and strategies to improve the biocontrol efficacy in winemaking. Antonie Van Leeuwenhoek 106:865–878

    Article  PubMed  CAS  Google Scholar 

  • Desiere F, McShan WM, van Sinderen D, Ferretti JJ, Brüssow H (2001) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288:325–341

    Article  CAS  PubMed  Google Scholar 

  • Doria F, Napoli C, Costantini A, Berta G, Saiz J-C, Garcia-Moruno E (2013) Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA. Appl Environ Microbiol 79:4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal – a review. S Afr J Enol Vitic 21:74–96

    Google Scholar 

  • Duda RL, Martincic K, Hendrix R (1995) Genetic basis of bacteriophage HK97 prohead assembly. J Mol Biol 247:636–647

    CAS  PubMed  Google Scholar 

  • Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbeini M, Bostian KA (1987) Viruses in fungi: infection of yeast with the K1 and K2 killer virus. Proc Natl Acad Sci USA 84:4293–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everson TC (1991) Control of phage in dairy plant. Bull Int Dairy Fed 263:24–28

    Google Scholar 

  • Feiss M (1986) Terminase and the recognition, cutting and packaging of lambda chromosomes. Trends Genet 2:100–104

    Article  CAS  Google Scholar 

  • Fernandes S, São-José C (2016) More than a hole: the holing lethal function may be required to fully sensitize bacteria to the lytic action of canonical endolysins. Mol Microbiol 102:92–106. doi:10.1111/mmi.13448

    Article  CAS  PubMed  Google Scholar 

  • Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10:S20

    Article  PubMed  PubMed Central  Google Scholar 

  • Gindreau E, Lonvaud-Funel A (1999) Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage ϕ10 MC. FEMS Microbiol Lett 171:231–238

    CAS  PubMed  Google Scholar 

  • Gindreau E, Turlois S, Lonvaud-Funel A (1997) Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage 10MC. FEMS Microbiol Lett 147:279–285

    Article  CAS  PubMed  Google Scholar 

  • Gleason FK, Holmgren A (1988) Thioredoxin and related proteins in prokaryotes. FEMS Microbiol Rev 4:271–297

    Article  CAS  PubMed  Google Scholar 

  • Gnaegi F, Sozzi T (1983) Les bacteriophages de Leuconostoc oenos et leur importance oenologique. Bull OIV 627:352–357

    Google Scholar 

  • Gnaegi F, Cazelles O, Sozzi TN, D’Amico (1984) Connaissances sur les bacteriophages the Leuconostoc oenos et progrès dans la maîtrise de la fermentation malolactique des vins. Rev Suisse Vitic Arboric Hortic 16:59–65

    CAS  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Peter G (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Heard GM, Fleet GH (1987) Occurrence and growth of killer yeasts during wine fermentation. Appl Environ Microbiol 53:2171–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heiligenstein S, Eisfeld K, Sendzik T, Jimenez-Becker N, Breinig F, Schmitt MJ (2006) Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25:4717–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Duda RL (1998) Bacteriophage HK97 head assembly: a protein ballet. Adv Virus Res 50:235–288

    Article  CAS  PubMed  Google Scholar 

  • Henick-Kling T (1993) Malolactic fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic, Amsterdam, pp 289–326

    Google Scholar 

  • Henick-Kling T, Lee TH, Nicholas DJD (1986a) Inhibition of bacterial growth and malolactic fermentation in wine by bacteriophage. J Appl Bacteriol 61:287–293

    Article  CAS  Google Scholar 

  • Henick-Kling T, Lee TH, Nicholas DJD (1986b) Characterization of the lytic activity of bacteriophages of Leuconostoc oenos isolated from wine. J Appl Bacteriol 61:525–534

    Article  CAS  Google Scholar 

  • Ivanovska J, Hardwick JM (2005) Viruses activate a genetically conserved cell death pathway in a unicellular organism. J Cell Biol 170:391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs CJ, Van Vuuren HJJ (1991) Effects of different killer yeasts on wine fermentations. Am J Enol Vitic 42:295–300

    CAS  Google Scholar 

  • Jaomanjaka F, Ballestra P, Dols-Lafargue M, LeMarrec C (2013) Expanding the diversity of oenococcal bacteriophages: insights in to a novel group based on the integrase sequence. Int J Food Microbiol 166:331–340

    Article  CAS  PubMed  Google Scholar 

  • Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix R (2000) Genomic sequences of bacteriophage HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51

    Article  CAS  PubMed  Google Scholar 

  • Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997) Yeast killer system. Clin Microbiol Rev 10:369–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony J, van Sinderen D (2015) Novel strategies to prevent or exploit phages in fermentations, insights from phage-host interactions. Curr Opin Biotechnol 32:8–13

    Article  CAS  PubMed  Google Scholar 

  • Marquina D, Santos A, Peinado JM (2002) Biology of killer yeasts. Int Microbiol 5:65–71

    Article  CAS  PubMed  Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H, Kung C (1990) Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87:6228–6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina K, Carrau FM, Giogia O, Bracesco N (1997) Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains. Appl Environ Microbiol 63:2821–2825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance in winemaking. FEMS Microbiol Rev 29:465–475

    CAS  PubMed  Google Scholar 

  • Musmanno RA, Di Maggio T, Coratza G (1999) Studies on strong and weak killer phenotypes of wine yeasts: production, activity of toxin in must, and its effect in mixed culture fermentation. J Appl Microbiol 87:932–938

    Article  CAS  PubMed  Google Scholar 

  • Nascimento JG, Guerreiro-Pereira MC, Costa SF, São-José C, Santos MA (2008) Nisin-triggered activity of Lys44, the secreted endolysin from Oenococcus oeni phage fOg44. J Bacteriol 190:457–461

    Article  CAS  PubMed  Google Scholar 

  • Nel L, Wingfield BD, van der Meer LJ, van Vuurnen HJJ (1987) Isolation and characterization of Leuconostoc oenos bacteriophages from wine and sugarcane. FEMS Microbiol Lett 44:63–67

    Article  Google Scholar 

  • Oliveira H, Melo LD, Santos SB, Nóbrega FL, Ferreira EC, Cerca N, Azeredo J, Kluskens LD (2013) Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 87:4558–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orentaite I, Poranen MM, Oksanen HM, Daugelavicius R, Bamford DH (2016) K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16:fow003. doi:10.1093/femsyr/fow003

    Article  PubMed  CAS  Google Scholar 

  • Parreira R, São-José C, Isidro A, Domingues S, Vieira G, Santos MA (1999) Gene organization in a central DNA fragment of Oenococcus oeni bacteriophage fOg44 encoding lytic, integrative and non-essential functions. Gene 226:83–93

    Article  CAS  PubMed  Google Scholar 

  • Perez F, Ramirez M, Regodon JA (2001) Influence of killer strains of Saccharomyces cerevisiae on wine fermentation. Antonie Van Leeuwenhoek 79:393–399

    Article  CAS  PubMed  Google Scholar 

  • Perrone B, Giacosa S, Rolle L, Cocolin L, Rantsiou K (2013) Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. Int J Food Microbiol 165:156–162

    Article  CAS  PubMed  Google Scholar 

  • Petering JE, Symons MR, Landgridge P, Henschke PA (1991) Determination of killer yeast activity in fermenting grape juice by using a marked Saccharomyces wine yeast strain. Appl Environ Microbiol 57:3232–3236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer P, Radler F (1982) Purification and characterization of extracellular and intracellular killer toxin of Saccharomyces cerevisae strain 28. J Gen Microbiol 128:2699–2706

    CAS  Google Scholar 

  • Poblet-Icart M, Bordons A, Lonvaud-Funel A (1998) Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr Microbiol 36:365–369

    Article  CAS  PubMed  Google Scholar 

  • Radler F, Schmitt MJ (1987) Killer toxins of yeasts: inhibitors of fermentation and their adsorption. J Food Prot 50:234–238

    Article  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Cousino N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M (2011) A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionary related to a chromosomal host gene. Appl Environ Microbiol 77:1822–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samson JE, Moineau S (2013) Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME (1987) Bacteriophages of industrial importance. In: Goyal SN, Gerba CP, Bitton G (eds) Page ecology. Wiley-Interscience, New York, pp 211–244

    Google Scholar 

  • Santos R, Vieira G, Santos MA, Paveia H (1996) Characterization of temperate bacteriophages of Leuconostoc oenos and evidence for two prophage attachment sites in the genome of starter strain PSU-1. J Appl Bacteriol 81:383–392

    CAS  Google Scholar 

  • Santos R, São-José C, Vieira G, Paveia H, Santos MA (1998) Genome diversity in temperate bacteriophages of Oenococcus oeni. Arch Virol 143:523–536

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Navascués E, Bravo E, Marquina D (2011) Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. Int J Food Microbiol 145:147–154

    Article  CAS  PubMed  Google Scholar 

  • São-José C (2002) Genome analysis and gene expression in oenophage fOg44 – evidence for a new strategy of bacteriophage-induced host lysis. PhD thesis. University of Lisbon, Portugal

    Google Scholar 

  • São-José C, Parreira R, Vieira G, Santos MA (2000) The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182:5823–5831

    Article  PubMed  PubMed Central  Google Scholar 

  • São-José C, Parreira R, Santos MA (2003) Triggering of host-cell lysis by double-stranded DNA bacteriophages: fundamental concepts, recent developments and emerging applications. In: Pandalai SG (ed) Recent research developments in bacteriology. Research Signpost, Transworld Research Network, Trivandrum, pp 103–130

    Google Scholar 

  • São-José C, Santos S, Nascimento J, Brito-Maduro AG, Parreira R, Santos MA (2004) Diversity in the lysis-integration region of oenophage genomes and evidence for multiple tRNA loci, as targets for prophage integration in Oenococcus oeni. Virology 325:82–95

    Article  PubMed  CAS  Google Scholar 

  • São-José C, Nascimento J, Parreira R, Santos MA (2007) Release of progeny phages from infected cells. In: Macgrath S, van Sinderen D (eds) Bacteriophages: genetics and molecular biology. Caister Academic, Norwich, pp 309–336

    Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Neuhausen F (1994) Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J Virol 68:1765–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Schernikau G (1997) Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol Biotechnol 35:281–285

    CAS  Google Scholar 

  • Seki T, Choi EH, Ryu D (1985) Construction of a killer wine yeast strain. Appl Environ Microbiol 49:1211–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K (1993) Killer yeast. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic, Newark, pp 243–263

    Google Scholar 

  • Sozzi T, Maret R, Poulin JM (1976) Mise en evidence de bactériophages dans le vin. Experientia 32:568–569

    Article  CAS  PubMed  Google Scholar 

  • Sozzi T, Gnaegi F, D’Amico N, Hose H (1982) Difficulties de fermentation malolactoque du vin dues à des bactériophages de Leuconostoc oenos. Rev Suisse Vitic Arboric Hortic 14:17–23

    CAS  Google Scholar 

  • Sutherland M, van Vuuren HJ, Howe MM (1994) Cloning, sequence and in vitro transcription/translation analysis of a 3.2-kb EcoRI–HindIII fragment of Leuconostoc oenos bacteriophage L10. Gene 148:125–129

    Article  CAS  PubMed  Google Scholar 

  • Tenreiro R, Santos R, Brito L, Paveia H, Vieira G, Santos MA (1993) Bacteriophages induced by mitomycin C treatment of Leuconostoc oenos strains from Portuguese wines. Lett Appl Microbiol 16:207–209

    Article  Google Scholar 

  • Vagnoli P, Musmanno RA, Cresti S, di Maggio T, Coratza G (1993) Occurrence of killer yeasts in spontaneous wine fermentations from the Tuscany region of Italy. Appl Environ Microbiol 59:4037–4043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vuuren HJJ, Jacobs CJ (1992) Killer yeasts in the wine industry: a review. Am J Enol Vitic 43:119–128

    Google Scholar 

  • Van Vuuren HJJ, Wingfield BD (1986) Killer yeasts. A cause of stuck fermentations in a wine cellar. Am J Enol Vitic 7:113–118

    Google Scholar 

  • Weiler F, Schmitt MJ (2005) Zygocin – a monomeric protein toxin secreted by virus-infected Zygosaccharomyces bailii. In: Schmitt MJ, Schaffrath R (eds) Microbial protein toxins. Springer, Berlin, pp 175–187

    Google Scholar 

  • Weinitschke S, Denger K, Cook AM, Smits TH (2007) The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology 153:3055–3060

    Article  CAS  PubMed  Google Scholar 

  • Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 60:250–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young TW (1987) Killer yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 2. Academic, London, pp 131–164

    Google Scholar 

  • Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young R, Wang I-N, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128

    Article  CAS  PubMed  Google Scholar 

  • Zé-Zé L, Tenreiro R, Brito L, Santos MA, Paveia H (1998) Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology 144:1145–1156

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred J. Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

São-José, C., Santos, M.A., Schmitt, M.J. (2017). Viruses of Wine-Associated Yeasts and Bacteria. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_5

Download citation

Publish with us

Policies and ethics