Skip to main content

Motion Control Algorithm for a Lower Limb Exoskeleton Based on Iterative LQR and ZMP Method for Trajectory Generation

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 48))

Abstract

In this paper a problem of controlling a lower limb exoskeleton during sit-to-stand motion (verticalization) in sagittal plane is studied. It is assumed that left and right sides of the exoskeleton are moving symmetrically. The main challenge in performing this motion is to maintain balance of the system. In this paper we use the zero-moment point (ZMP) methodology to produce desired trajectories for the generalized coordinates that would allow the system to remain vertically balanced. The limitations of this approach is that, it requires relatively accurate work of the feedback controller that ensures that the exoskeleton follows generated trajectories. In this work we use Iterative Linear Quadratic Regulator (ILQR) as a feedback controller in order to obtained the required accuracy. In the paper a way of trajectory generation that uses ZMP methodology is discussed, the results of the numerical simulation of the exoskeleton motion are presented and analyzed. A comparison between a natural human motion (for a human not wearing an exoskeleton) and the simulated motion of an exoskeleton using the proposed algorithm is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anam, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. Proc. Eng. 41, 988–994 (2012)

    Article  Google Scholar 

  2. Contreras-Vidal, J.L., Grossman, R.G.: NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1579–1582. IEEE (2013)

    Google Scholar 

  3. Barbareschi, G., Richards, R., Thornton, M., Carlson, T., Holloway, C.: Statically vs dynamically balanced gait: analysis of a robotic exoskeleton compared with a human. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6728–6731. IEEE (2015)

    Google Scholar 

  4. Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Hum. Rob. 1(01), 157–173 (2004)

    Article  Google Scholar 

  5. Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro, F., Fujiwara, K., Hirukawa, H.: Biped walking pattern generator allowing auxiliary zmp control. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993–2999. IEEE (2006)

    Google Scholar 

  6. Mitobe, K., Capi, G., Nasu, Y.: Control of walking robots based on manipulation of the zero moment point. Robotica 18(06), 651–657 (2000)

    Article  Google Scholar 

  7. Choi, Y., You, B.J., Oh, S.R.: On the stability of indirect ZMP controller for biped robot systems. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings, vol. 2, pp. 1966–1971. IEEE (2004)

    Google Scholar 

  8. Low, K.H., Liu, X., Goh, C.H., Yu, H.: Locomotive control of a wearable lower exoskeleton for walking enhancement. J. Vib. Control 12(12), 1311–1336 (2006)

    Article  MATH  Google Scholar 

  9. Panovko, G., Savin, S., Jatsun, S., Yatsun, A.: Simulation of controlled motion of an exoskeleton in verticalization process. J. Mach. Manuf. Reliab. (2016) (in publishing)

    Google Scholar 

  10. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 2, pp. 1620–1626. IEEE (2003)

    Google Scholar 

  11. Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32(2), 293–312 (2015)

    Article  Google Scholar 

  12. Tsukahara, A., Hasegawa, Y., Sankai, Y.: Standing-up motion support for paraplegic patient with robot suit HAL. In: IEEE International Conference on Rehabilitation Robotics, 2009. ICORR 2009, pp. 211–217. IEEE (2009)

    Google Scholar 

  13. Tsukahara, A., Kawanishi, R., Hasegawa, Y., Sankai, Y.: Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv. Robot. 24(11), 1615–1638 (2010)

    Article  Google Scholar 

  14. Jun, H.G., Chang, Y.Y., Dan, B.J., Jo, B.R., Min, B.H., Yang, H., Kim, J.: Walking and sit-to-stand support system for elderly and disabled. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–5. IEEE (2011)

    Google Scholar 

  15. Taslim Reza, S.M., Ahmad, N., Choudhury, I.A., Ghazilla, R.A.R.: A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors. Sensors 14(3), 4342–4363 (2014)

    Article  Google Scholar 

  16. Salah, O., Ramadan, A.A., Sessa, S., Ismail, A.A., Fujie, M., Takanishi, A.: Anfis-based sensor fusion system of sit-to-stand for elderly people assistive device protocols. Int. J. Autom. Comput. 10(5), 405–413 (2013)

    Article  Google Scholar 

  17. Mughal, A.M., Iqbal, K.: 3D bipedal model for biomechanical sit-to-stand movement with coupled torque optimization and experimental analysis. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 568–573. IEEE (2010)

    Google Scholar 

  18. Jatsun, S., Savin, S., Yatsun, A., Malchikov, A.: Study of controlled motion of exoskeleton moving from sitting to standing position. In: Advances in Robot Design and Intelligent Control, pp. 165–172. Springer International Publishing (2016)

    Google Scholar 

  19. Jatsun, S., Savin, S., Yatsun, A., Turlapov, R.: Adaptive control system for exoskeleton performing sit-to-stand motion. In 10th International Symposium on Mechatronics and its Applications (ISMA), pp. 1–6. IEEE (2015)

    Google Scholar 

  20. Jatsun, S., Savin, S., Yatsun, A., Postolnyi, A.: Control system parameter optimization for lower limb exoskeleton with integrated elastic elements. In: Proceedings of the International Conference on CLAWAR (2016) (in publishing)

    Google Scholar 

  21. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2014)

    Google Scholar 

  22. Jatsun, S.F., Vorochaeva, A., Yu, L., Yatsun, A.S., Savin, S.I.: The modelling of the standing-up process of the anthropomorphic mechanism. In: Proceedings of the International Conference on CLAWAR, pp. 175–182 (2015)

    Google Scholar 

  23. Li, W., Todorov, E.: Iterative linear quadratic regulator design for nonlinear biological movement systems. In: ICINCO, vol. 1, pp. 222–229 (2004)

    Google Scholar 

  24. Anderson, B.D., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Courier Corporation (2007)

    Google Scholar 

  25. Jatsun, S., Savin, S., Lushnikov, B., Yatsun, A.: Algorithm for motion control of an exoskeleton during verticalization. In ITM Web of Conferences, vol. 6. EDP Sciences (2016)

    Google Scholar 

  26. Jatsun, S., Savin, S., Yatsun, A.: Parameter optimization for exoskeleton control system using sobol sequences. In: Proceedings of 21st CISM-IFToMM Symposium on Robot Design (2016) (in publishing)

    Google Scholar 

  27. Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Res. Q. Exerc. Sport 54(2), 169–178 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

Work is supported by RSF, Project № 14-39-00008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Savin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Jatsun, S., Savin, S., Yatsun, A. (2018). Motion Control Algorithm for a Lower Limb Exoskeleton Based on Iterative LQR and ZMP Method for Trajectory Generation. In: Husty, M., Hofbaur, M. (eds) New Trends in Medical and Service Robots. MESROB 2016. Mechanisms and Machine Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-59972-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59972-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59971-7

  • Online ISBN: 978-3-319-59972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics