Skip to main content

On the Exact Solution of the Distance Geometry with Interval Distances in Dimension 1

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 717))

Abstract

Distance Geometry consists in embedding a simple weighted undirected graph in a given space so that the distances between embedded vertices correspond to the edge weights. Weights can be either exact real values, or real-valued intervals. In this work, the focus is on problems where the embedding space is the Euclidean 1-dimensional space, and the general situation where distances can be represented by intervals is taken into consideration. A previously proposed branch-and-prune algorithm is adapted to the 1-dimensional case, and the proposed variant turns out to be deterministic even in presence of interval distances. Backtracking pruning is introduced in the algorithm for guaranteeing that all vertex positions in a given solution are actually feasible. The proposed algorithm is tested on a set of artificially generated instances in dimension 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from NOESY distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–310 (2013)

    Article  MathSciNet  Google Scholar 

  2. Alves, R., Cassioli, A., Mucherino, A., Lavor, C., Liberti, L.: The integration of clifford algebra in the \(i\) BP algorithm for the DMDGP. In: Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO13), pp. 745–746. Granada, Spain (2013)

    Google Scholar 

  3. Alves, R., Cassioli, A., Mucherino, A., Lavor, C., Liberti, L.: Adaptive branching in iBP with clifford algebra. In: Proceedings of Distance Geometry and Applications (DGA13), pp. 65-69. Manaus, Amazonas, Brazil (2013)

    Google Scholar 

  4. Billinge, S.J.L., Duxbury, Ph.M., Gonçalves, D.S., Lavor, C., Mucherino, A.: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures. Q. J. Oper. Res. 14(4), 337–376 (2016)

    Google Scholar 

  5. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2, 188–220 (2006)

    Article  Google Scholar 

  6. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  7. Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freris, N.M., Graham, S.R., Kumar, P.R.: Fundamental limits on synchronizing clocks over networks. IEEE Trans. Autom. Control 56(6), 1352–1364 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gonçalves, D.S., Mucherino, A., Lavor, C.: An adaptive branching scheme for the branch & prune algorithm applied to distance geometry. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS14), Workshop on Computational Optimization (WCO14), pp. 463–469. Warsaw, Poland (2014)

    Google Scholar 

  10. Gonçalves, D.S., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Glob. Optim. (2017). To appear

    Google Scholar 

  11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 25(4), 925–942 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of World Academy of Science, Engineering and Technology 58, International Conference on Bioinformatics and Biomedicine (ICBB09), pp. 349–353. Venice, Italy (2009)

    Google Scholar 

  17. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications, 410 pp. Springer, New York (2013)

    Google Scholar 

  19. Mucherino, A., de Freitas, R., Lavor, C.: Distance geometry and applications. Discret. Appl. Math. 197, 1–144 (2015). Special issue

    Article  MathSciNet  Google Scholar 

  20. Petitjean, M.: Spheres unions and intersections and some of their applications in molecular modeling. In: [19], pp. 61–83 (2013)

    Google Scholar 

  21. Saxe, J.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of \(17^{th}\) Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  22. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19(2), 655–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, Y.-C., Chaudhari, Q., Serpedin, E.: Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag. 28(1), 124–138 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mucherino, A. (2018). On the Exact Solution of the Distance Geometry with Interval Distances in Dimension 1. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-319-59861-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59861-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59860-4

  • Online ISBN: 978-3-319-59861-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics