Skip to main content

Teratogenic Influences on Cerebellar Development

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1279 Accesses

Abstract

The effects of environmental agents on cerebellar development are profound, and this organ has not been given the attention that is deserving of it, based on its importance in motor, cognitive, and behavioral functions. This chapter will review select agents associated with teratogenic effects on cerebellar structure and function. Mechanisms of teratogenesis and genetic influences will be addressed. The emerging role of effects of environmental agents and effect on the epigenetic mechanisms and gene expression are discussed. Prenatal alcohol exposure and fetal alcohol spectrum disorder will be discussed in greater detail, as this disorder is the most common teratogenic disorder affecting humans. Indeed, many of the phenotypic effects of FASD are the result of cerebellar injury and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ujházy E, Mach M, Navarová J, Brucknerová I, Dubovický M. Teratology – past, present and future. Interdiscip Toxicol. 2012;5(4):163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson JG. Environment and birth defects. New York: Academic Press; 1973.

    Google Scholar 

  3. Frías JL, Gilbert-Barness E. Human teratogens: current controversies. Adv Pediatr Infect Dis. 2008;55:171–211.

    Google Scholar 

  4. Holmes LB. Human teratogens: update 2010. Birth Defects Res A Clin Mol Teratol. 2011;91(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Persaud TVN, Chudley AE, Skalko RG. Basic concepts in teratology. New York: Alan R. Liss; 1985.

    Google Scholar 

  6. Brent RL, Beckman DA. Environmental teratogens. Bull N Y Acad Med. 1990;66(2):123–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin. 2014;32(4):1105–15.

    Article  PubMed  Google Scholar 

  8. Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C: Semin Med Genet. 2014;166C(2):211–26.

    Article  CAS  Google Scholar 

  9. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2016;15(1):34–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.

    PubMed  PubMed Central  Google Scholar 

  11. Holson RR, Gazzara RA, Ferguson SA, Ali SF, Laborde JB, Adams J. Gestational retinoic acid exposure: a sensitive period for effects on neonatal mortality and cerebellar development. Neurotoxicol Teratol. 1997;19(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  12. Pastuszak AL, Schler L, Speck Martins CE, et al. Use of misoprostol during pregnancy and Moebius’ syndrome in infants. N Engl J Med. 1998;338(26):1881–5.

    Article  CAS  PubMed  Google Scholar 

  13. Merlini L, Fluss J, Dhouib A, Vargas MI, Becker M. Mid-hindbrain malformations due to drugs taken during pregnancy. J Child Neurol. 2014;29(4):538–44.

    Article  PubMed  Google Scholar 

  14. Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146(5):151–62.

    Article  CAS  Google Scholar 

  15. Neu N, Duchon J, Zachariah P. TORCH infections. Clin Perinatol. 2015;42(1):77–103.

    Article  PubMed  Google Scholar 

  16. Barkovich AJ, Raybaud C. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  17. Gregg NM. Congenital cataract following German measles in the mother. Trans Ophthalmol Soc Aust. 1941;3:35–45.

    Google Scholar 

  18. Rosenberg HS, Oppenheimer EH, Esterly JR. Congenital rubella syndrome: the late effects and their relation to early lesions. Perspect Pediatr Pathol. 1981;6:183–202.

    CAS  PubMed  Google Scholar 

  19. Dudgeon JA. Congenital rubella. J Pediatr. 1975;87:1078–86.

    Article  CAS  PubMed  Google Scholar 

  20. Townsend JJ, Wolinsky JS, Baringer JR. The neuropathology of progressive rubella panencephalitis of late onset. Brain. 1976;99(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  21. Cluver C, Meyer R, Odendaal H, Geerts L. Congenital rubella with agenesis of the inferior cerebellar vermis and total anomalous pulmonary venous drainage. Ultrasound Obstet Gynecol. 2013;42(2):235–7.

    Article  CAS  PubMed  Google Scholar 

  22. Webster WS. Teratogen update: congenital rubella. Teratology. 1998;58:13–23.

    Article  CAS  PubMed  Google Scholar 

  23. Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012 Apr;67(4):287–94.

    Article  CAS  PubMed  Google Scholar 

  24. Sze G, Lee SH. Infectious disease. In: Lee SH, KCVG R, Zimmerman RA, editors. Cranial MRI and CT. 4th ed. New York: Mc Graw-Hill; 1999.

    Google Scholar 

  25. Huleihel M, Golan H, Hallak M. Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved. Reprod Biol Endocrinol. 2004;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects – reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981–7.

    Article  CAS  PubMed  Google Scholar 

  27. de Fatima Vasco Aragao M, van der Linden V, Brainer-Lima AM, Coeli RR, Rocha MA, Sobral da Silva P, Dur Cecosta Gomes de Carvalho M, van der Linden A, Cesario de Holanda A, Valenca MM. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ. 2016;353:i1901.

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Linden V, Filho EL, Lins OG, van der Linden A, Aragão Mde F, Brainer-Lima AM, Cruz DD, Rocha MA, Sobral da Silva PF, Carvalho MD, do Amaral FJ, Gomes JA, Ribeiro de Medeiros IC, Ventura CV, Ramos RC. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ. 2016;354:i3899.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faria NR, Azevedo RSS, Kraemer MUG, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122–30.

    Article  PubMed  Google Scholar 

  31. Soares de Oliveira-Szejnfeld P, Levine D, Melo AS, Amorim MM, Batista AG, Chimelli L, et al. Congenital brain abnormalities and Zika Virus: what the radiologist can expect to see prenatally and postnatally. Radiology. 2016;281:203–18. 161584

    Article  PubMed  Google Scholar 

  32. Leal MC, Muniz LF, Ferreira TS, et al. Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection – Brazil, November 2015–May 2016. MMWR Morb Mortal Wkly Rep. 2016;65:917–9.

    Article  PubMed  Google Scholar 

  33. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.

    Article  CAS  PubMed  Google Scholar 

  34. Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45.

    Article  CAS  PubMed  Google Scholar 

  35. Russell K, Oliver SE, Lewis L, Barfield WD, Cragan J, Meaney-Delman D, et al. Update: interim guidance for the evaluation and Management of Infants with possible congenital Zika virus infection – United States, August 2016. MMWR Morb Mortal Wkly Rep. 2016;65(33):870–8.

    Article  PubMed  Google Scholar 

  36. Paixão ES, Barreto F, Teixeira Mda G, Costa Mda C, Rodrigues LC. History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health. 2016;106(4):606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hazin AN, Poretti A, Turchi Martelli CM, Huisman TA, Microcephaly Epidemic Research Group. Computed tomographic findings in microcephaly associated with Zika virus. N Engl J Med. 2016;374(22):2193–5.

    Article  PubMed  Google Scholar 

  38. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durbin AP. Vaccine development for Zika virus-timelines and strategies. Semin Reprod Med. 2016 Sep;8

    Google Scholar 

  41. Barreto ML, Barral-Netto M, Stabeli R, Almeida-Filho N, Vasconcelos PF, Teixeira M, et al. Zika virus and microcephaly in Brazil: a scientific agenda. Lancet. 2016;387:919–21.

    Article  PubMed  Google Scholar 

  42. Chang SI, McAuley JW. Pharmacotherapeutic issues for women of childbearing age with epilepsy. Ann Pharmacother. 1998;32(7–8):794–801.

    Article  CAS  PubMed  Google Scholar 

  43. Speidel BD, Meadow SR. Maternal epilepsy and abnormalities of the fetus and the newborn. Lancet. 1972;2:839–43.

    Article  CAS  PubMed  Google Scholar 

  44. Hill RM, Verniaud WM, Horning MG, McCulley LB, Morgan NF. Infants exposed in utero t antiepileptic drugs: a prospective study. Am J Dis Child. 1974;127:645–53.

    Article  CAS  PubMed  Google Scholar 

  45. Hanson JW, Smith DW. The fetal hydantoin syndrome. J Pediatr. 1975;87:285–90.

    Article  CAS  PubMed  Google Scholar 

  46. Hanson JW, Myrianthopoulos NC, Harvey MA, Smith DW. Risks to the offspring of women treated with hydantoin anticonvulsants, with emphasis on the fetal hydantoin syndrome. J Pediatr. 1976;89(4):662–8.

    Article  CAS  PubMed  Google Scholar 

  47. Seip M. Growth retardation, dysmorphic facies and minor malformations following massive exposure to phenobarbitone in utero. Acta Paediatr Scand. 1976;65:617–21.

    Article  CAS  PubMed  Google Scholar 

  48. Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. N Engl J Med. 1989;320:1661–6.

    Article  CAS  PubMed  Google Scholar 

  49. Lindhout D, Hoppener RJEA, Meinardi H. Teratogenicity of antiepilepticdrug combinations with special emphasis on epoxidation (of carbamazepine). Epilepsia. 1984;25:77–83.

    Article  CAS  PubMed  Google Scholar 

  50. Holmes LB, Harvey EA, Coull BA, et al. The teratogenicity of anticonvulsant drugs. N Engl J Med. 2001;344(15):1132–8.

    Article  CAS  PubMed  Google Scholar 

  51. Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK epilepsy and pregnancy register. J Neurol Neurosurg Psychiatry. 2006;77(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dansky LV, Finnell RH. Parental epilepsy, anticonvulsant drugs, and reproductive outcome: epidemiologic and experimental findings spanning three decades; 2: human studies. Reprod Toxicol. 1991;5(4):301–35.

    Article  CAS  PubMed  Google Scholar 

  53. Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LT, EUROCAT Antiepileptic Study Working Group. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 2010;362(23):2185–93.

    Article  CAS  PubMed  Google Scholar 

  54. Buehler BA, Delimont D, van Waes M, Finnell RH. Prenatal prediction of risk of the fetal hydantoin syndrome. N Engl J Med. 1990;322(22):1567–72.

    Article  CAS  PubMed  Google Scholar 

  55. Strickler SM, Dansky LV, Miller MA, Seni M-H, Andermann E, Spielberg SP. Genetic predisposition to phenytoin-induced birth defects. Lancet. 1985;2:746–9.

    Article  CAS  PubMed  Google Scholar 

  56. Wells PG, Winn LM. Biochemical toxicology of chemical teratogenesis. Clin Rev Biochem Mol Biol. 1996;31:1–40.

    Article  CAS  Google Scholar 

  57. Hill DS, Wlodarczyk BJ, Palacios AM, Finnell RH. Teratogenic effects of antiepileptic drugs. Expert Rev Neurother. 2010;10(6):943–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DiLiberti JH, Farndon PA, Dennis NR, Curry CJ. The fetal valproate syndrome. Am J Med Genet. 1984;19(3):473–81.

    Article  CAS  PubMed  Google Scholar 

  59. Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, et al. Verification of the fetal valproate syndrome phenotype. Am J Med Genet. 1988;29(1):171–85.

    Article  CAS  PubMed  Google Scholar 

  60. Winter RM, Donnai D, Burn J, Tucker SM. Fetal valproate syndrome: is there a recognisable phenotype? J Med Genet. 1987;24(11):692–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morrow JI, Hunt SJ, Russell AJ, et al. Folic acid use and major congenital malformations in offspring of women with epilepsy: a prospective study from the UK epilepsy and pregnancy register. J Neurol Neurosurg Psychiatry. 2009;80(5):506–11.

    Article  CAS  PubMed  Google Scholar 

  62. Christianson AL, Chesler N, Kromberg JG. Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol. 1994;36(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  63. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ingram JL, Peckham SM, Tisdale B, Rodier PM. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol. 2000;22(3):319–24.

    Article  CAS  PubMed  Google Scholar 

  65. Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013;124(6):832–43.

    Article  CAS  PubMed  Google Scholar 

  66. Ergaz Z, Weinmstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016;64:116–40.

    Article  CAS  PubMed  Google Scholar 

  67. Ghosh VB, Kapoor S, Prakash A, Bhatt S. Cerebellar atrophy in a child with valproate toxicity. Indian J Pediatr. 2011;78(8):999–1001.

    Article  PubMed  Google Scholar 

  68. Papazian O, Cañizales E, Alfonso I, Archila R, Duchowny M, Aicardi J. Reversible dementia and apparent brain atrophy during valproate therapy. Ann Neurol. 1995;38(4):687–91.

    Article  CAS  PubMed  Google Scholar 

  69. Twardowschy CA, Werneck LC, Scola RH, Borgio JG, De Paola L, Silvado C. The role of CYP2C9 polymorphisms in phenytoin-related cerebellar atrophy. Seizure. 2013;22(3):194–7.

    Article  PubMed  Google Scholar 

  70. Ney GC, Lantos G, Barr WB, Schaul N. Cerebellar atrophy in patients with long-term phenytoin exposure and epilepsy. Arch Neurol. 1994;51(8):767–71. Mar;42(1):77–103

    Article  CAS  PubMed  Google Scholar 

  71. Lemoine P, Harousseau H, Borteyru JP, Menuet JC. Les enfants de parents alcooliques. Ouest Med. 1968;21:476–82.

    Google Scholar 

  72. Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.

    Article  CAS  PubMed  Google Scholar 

  73. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet. 1973;302(7836):999–1001.

    Article  CAS  PubMed  Google Scholar 

  74. Sulik KK, Johnston MC, Webb MA. Fetal alcohol syndrome: embryogenesis in a mouse model. Science. 1981;214(4523):936–8.

    Article  CAS  PubMed  Google Scholar 

  75. Valenzuela CF, Morton RA, Diaz MR, Topper L. Does moderate drinking harm the fetal brain? Insights from animal models. Trends Neurosci. 2012;35(5):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sadrian B, Lopez-Guzman M, Wilson DA, Saito M. Distinct neurobehavioral dysfunction based on the timing of developmental binge-like alcohol exposure. Neuroscience. 2014;280:204–19.

    Article  CAS  PubMed  Google Scholar 

  77. Clarren SK. Recognition of fetal alcohol syndrome. J Am Med Assoc. 1981;245(23):2436–9.

    Article  CAS  Google Scholar 

  78. Clarren SK, Smith DW. The fetal alcohol syndrome. Lamp. 1978;35(10):4–7.

    CAS  PubMed  Google Scholar 

  79. Stratton K, Howe C. Battaglia. Fetal alcohol syndrome: diagnosis, epidemiology, prevention, and treatment. Institute of Medicine (IOM). Washington, DC: National Academy Press; 1996.

    Google Scholar 

  80. Aase JM, Jones KL, Clarren SK. Do we need the term “FAE”? Pediatrics. 1995;95(3):428–30.

    CAS  PubMed  Google Scholar 

  81. Astley SJ, Clarren SK. Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol. 2000;35(4):400–10.

    Article  CAS  PubMed  Google Scholar 

  82. Chudley AE, Conry J, Cook JL, Loock C, Rosales T, LeBlanc N, Public Health Agency of Canada’s National Advisory Committee on Fetal Alcohol Spectrum Disorder. Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. CMAJ. 2005;172(5 Suppl):S1–S21.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hoyme HE, May PA, Kalberg WO, Kodituwakku P, Gossage JP, Trujillo PM, et al. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 Institute of Medicine criteria. Pediatrics. 2005;115(1):39–47.

    Article  PubMed  Google Scholar 

  84. Cook JL, Green CR, Lilley CM, Anderson SM, Baldwin ME, Chudley AE, Canada Fetal Alcohol Spectrum Disorder Research Network, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ. 2016;188(3):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hoyme HE, Kalberg WO, Elliott AJ, Blankenship J, Buckley D, Marais AS, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016;138(2) pii: e20154256. doi: 10.1542/peds.2015-4256. Epub 2016 Jul 27.

    Google Scholar 

  86. Leibson T, Neuman G, Chudley AE, Koren G. The differential diagnosis of fetal alcohol spectrum disorder. J Popul Ther Clin Pharmacol. 2014;21(1):e1–e30.

    PubMed  Google Scholar 

  87. Popova S, Lange S, Shield K, Mihic A, Chudley AE, Mukherjee RA, Bekmuradov D, Rehm J. Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. Lancet. 2016;387(10022):978–87.

    Article  PubMed  Google Scholar 

  88. Goh YI, Chudley AE, Clarren SK, Koren G, Orrbine E, et al. Development of Canadian screening tools for fetal alcohol spectrum disorder. Can J Clin Pharmacol. 2008;15(2):e344–66.

    PubMed  Google Scholar 

  89. Streissguth A, Barr H, Kogan J, Bookstein F. Primary and secondary disabilities in fetal alcohol syndrome. In: Streissguth AP, Kanter J, editors. The challenge of fetal alcohol syndrome: overcoming secondary disabilities. Seattle: University of Washington Press; 1997.

    Google Scholar 

  90. Streissguth AP, Bookstein FL, Barr HM, Sampson PD, O’Malley K, Young JK. Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J Dev Behav Pediatr. 2004;25(4):228–38.

    Article  PubMed  Google Scholar 

  91. May PA, Baete A, Russo J, Elliott AJ, Blankenship J, Kalberg WO, et al. Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics. 2014;134(5):855–66.

    Article  PubMed  PubMed Central  Google Scholar 

  92. May PA, Fiorentino D, Coriale G, Kalberg WO, Hoyme HE, Aragon AS, et al. Prevalence of children with severe fetal alcohol spectrum disorders in communities near Rome, Italy: new estimated rates are higher than previous estimates. Int J Environ Res Public Health. 2011;8(6):2331–51.

    Article  PubMed  PubMed Central  Google Scholar 

  93. May PA, de Vries MM, Marais AS, Kalberg WO, Adnams CM, Hasken JM, et al. The continuum of fetal alcohol spectrum disorders in four rural communities in South Africa: prevalence and characteristics. Drug Alcohol Depend. 2016;159:207–18.

    Article  PubMed  Google Scholar 

  94. Astley SJ, Bailey D, Talbot C, Clarren SK. Fetal alcohol syndrome (FAS) primary prevention through FAS diagnosis: I. Identification of high-risk birth mothers through the diagnosis of their children. Alcohol Alcohol. 2000;35(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  95. Sulik KK, O’Leary-Moore SK, Riley EP. Better safe than sorry. BJOG. 2012;119(10):1159–61.

    Article  CAS  PubMed  Google Scholar 

  96. Avery MR, Droste N, Giorgi C, Ferguson A, Martino F, Coomber K, Miller P. Mechanisms of influence: alcohol industry submissions to the inquiry into fetal alcohol spectrum disorders. Drug Alcohol Rev. 2016;35:665.

    Article  PubMed  Google Scholar 

  97. Popova S, Lange S, Burd L, Rehm J. Canadian children and youth in care: the cost of fetal alcohol spectrum disorder. Child Youth Care Forum. 2014;43:83–96.

    Article  PubMed  Google Scholar 

  98. Popova S, Lange S, Burd L, Rehm J. The economic burden of fetal alcohol spectrum disorder in Canada in 2013. Alcohol Alcohol. 2016;51(3):367–75.

    Article  PubMed  Google Scholar 

  99. Riley EP, Clarren S, Weinberg J, Johnsson E, editors. Fetal alcohol spectrum disorder: management and policy perspectives of FASD. New York: Wiley-Blackwell; 2011.

    Google Scholar 

  100. Randall CL, Ekblad U, Anton RF. Perspectives on the pathophysiology of fetal alcohol syndrome. Alcohol Clin Exp Res. 1990;14(6):807–12.

    Article  CAS  PubMed  Google Scholar 

  101. Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology. 1989;10(3):321–34.

    CAS  PubMed  Google Scholar 

  102. Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood). 2005;230:394–406.

    Article  CAS  Google Scholar 

  103. Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. Handb Clin Neurol. 2014;125:463–75.

    Article  PubMed  Google Scholar 

  104. Parnell SE, O’Leary-Moore SK, Godin EA, Dehart DB, Johnson BW, Allan Johnson G, et al. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res. 2009;33(6):1001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Parnell SE, Holloway HT, O’Leary-Moore SK, Dehart DB, Paniaqua B, et al. Magnetic resonance microscopy-based analyses of the neuro-anatomical effects of gestational day 9 ethanol exposure in mice. Neurotoxicol Teratol. 2013;39:77–83.

    Article  CAS  PubMed  Google Scholar 

  106. Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M. Nutrition implications for fetal alcohol spectrum disorder. Adv Nutr. 2014;5(6):675–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. May PA, Gossage JP. Maternal risk factors for fetal alcohol spectrum disorders: not as simple as it might seem. Alcohol Res Health. 2011;34(1):15–26.

    PubMed  PubMed Central  Google Scholar 

  108. Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.

    Article  CAS  PubMed  Google Scholar 

  109. McCarver DG, Thomasson HR, Martier SS, Sokol RJ, Li T. Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther. 1997;283(3):1095–101.

    CAS  PubMed  Google Scholar 

  110. Chudley AE. Genetic factors contributing to fetal alcohol spectrum disorder. In: Riley EP, Clarren S, Weinberg J, Johnsson E, editors. Fetal alcohol spectrum disorder: management and policy perspectives of FASD. Weinheim: Wiley; 2011.

    Google Scholar 

  111. Corkery T, Chudley AE. A review of genetic and epigenetic factors in Fetal Alcohol Spectrum Disorder (FASD). XLIIIèmes Journées Nationales de Néonatologie 2013. 33 Progress en Néonatologie. Jarreau P-H et Moriette G coord. Paris.

    Google Scholar 

  112. Lewis SJ, Zuccolo L, Davey Smith G, Macleod J, Rodriguez S, Draper ES, et al. Fetal alcohol exposure and IQ at age 8: evidence from a population-based birth-cohort study. PLoS One. 2012;7(11):e49407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guerri C. Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure. Neurotox Res. 2002;4(4):327–35.

    Article  CAS  PubMed  Google Scholar 

  114. Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol. 2009;44(2):108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kot-Leibovich H, Fainsod A. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech. 2009;2(5–6):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shabtai Y, Jubran H, Nassar T, Hirschberg J, Fainsod A. Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J. 2016;473(10):1423–31.

    Article  CAS  PubMed  Google Scholar 

  117. Deltour L, Ang HL, Duester G. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J. 1996;10(9):1050–7.

    Article  CAS  PubMed  Google Scholar 

  118. Miranda RC, Santillano DR, Camarillo C, Dohrman D. Modeling the impact of alcohol on cortical development in a dish: strategies from mapping neural stem cell fate. Methods Mol Biol. 2008;447:151–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wilkemeyer MF, Menkari CE, Charness ME. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action. Mol Pharmacol. 2002;62(5):1053–60.

    Article  CAS  PubMed  Google Scholar 

  120. Minana R, Climent E, Barettino D, Segui JM, Renau-Piqueras J, Guerri C. Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development. J Neurochem. 2000;75:954–64.

    Article  CAS  PubMed  Google Scholar 

  121. Guerri C, Montoliu C, Renau-Piqueras J. Involvement of free radical mechanism in the toxic effects of alcohol: implications for fetal alcohol syndrome. Adv Exp Med Biol. 1994;366:291–305.

    Article  CAS  PubMed  Google Scholar 

  122. Miller L, Shapiro AM, Wells PG. Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice. Toxicol Sci. 2013;134(2):400–11.

    Article  CAS  PubMed  Google Scholar 

  123. Guerri C, Pascual M, Renau-Piqueras J. Glia and fetal alcohol syndrome. Neurotoxicology. 2001;22(5):593–9.

    Article  CAS  PubMed  Google Scholar 

  124. Lombard Z, Tiffin N, Hofmann O, Bajic VB, Hide W, Ramsay M. Computational selection and prioritization of candidate genes for fetal alcohol syndrome. BMC Genomics. 2007;8:389.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Miller MW, Luo J. Effects of ethanol and transforming growth factor beta (TGF beta) on neuronal proliferation and nCAM expression. Alcohol Clin Exp Res. 2002;26(8):1281–5.

    CAS  PubMed  Google Scholar 

  126. Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580(21):4984–90.

    Article  CAS  PubMed  Google Scholar 

  127. Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life Sci. 2004;74(19):2339–64.

    Article  CAS  PubMed  Google Scholar 

  128. Kumada T, Jiang Y, Cameron DB, Komuro H. How does alcohol impair neuronal migration? J Neurosci Res. 2007;85(3):465–70.

    Article  CAS  PubMed  Google Scholar 

  129. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  CAS  PubMed  Google Scholar 

  130. Chen SY, Periasamy A, Yang B, Herman B, Jacobson K, Sulik KK. Differential sensitivity of mouse neural crest cells to ethanol-induced toxicity. Alcohol. 2000;20(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  131. Ahlgren SC, Bronner-Fraser M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr Biol. 1999;9(22):1304–14.

    Article  CAS  PubMed  Google Scholar 

  132. Ahlgren SC, Thakur V, Bronner-Fraser M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci U S A. 2002;99(16):10476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.

    Article  CAS  PubMed  Google Scholar 

  134. Haycock PC. Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod. 2009;81:607.

    Article  CAS  PubMed  Google Scholar 

  135. Kobor MS, Weinberg J. Focus on: epigenetics and fetal alcohol spectrum disorders. Alcohol Res Health. 2011;34(1):29–37.

    PubMed  PubMed Central  Google Scholar 

  136. Liyanage VR, Curtis K, Zachariah RM, Chudley AE, Rastegar M. Overview of the genetic basis and epigenetic mechanisms that contribute to FASD pathobiology. Curr Top Med Chem. 2016;17:808.

    Article  CAS  Google Scholar 

  137. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    Article  CAS  PubMed  Google Scholar 

  138. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  139. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    Article  CAS  PubMed  Google Scholar 

  140. Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.

    Article  CAS  PubMed  Google Scholar 

  141. Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6(1):e1000811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod. 2009;81:618–27.

    Article  CAS  PubMed  Google Scholar 

  143. Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol. 2011;31:507–12.

    Article  CAS  PubMed  Google Scholar 

  144. Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics. 2015;7(8):1259–74.

    Article  CAS  PubMed  Google Scholar 

  145. Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4:500–11.

    Article  CAS  PubMed  Google Scholar 

  146. Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Clarren SK. Central nervous system malformations in two offspring of alcoholic women. Birth Defects-Orig. 1977;13:151–3.

    CAS  Google Scholar 

  148. Wizniewski K. A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics. 1998;14:197–201.

    Article  Google Scholar 

  149. Pfeiffer J, Majewski F, Fischbach H, Bierich JR, Volk B. Alcohol embryo- and fetopathy. J Neurol Sci. 1979;41:125–37.

    Article  Google Scholar 

  150. Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res. 1998;22:304–12.

    Article  CAS  PubMed  Google Scholar 

  151. Mattson SN, Riley EP, Jernigan TL, Ehlers CL, Delis DC, Jones KL, et al. Fetal alcohol syndrome: a case report of neuropsychological, MRI and EEG assessment of two children. Alcohol Clin Exp Res. 1992;16(5):1001–3.

    Article  CAS  PubMed  Google Scholar 

  152. Swayze VW 2nd, Johnson VP, Hanson JW, Piven J, Sato Y, Giedd JN, Mosnik D, Andreasen NC. Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics. 1997;99(2):232–40.

    Article  PubMed  Google Scholar 

  153. Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL. Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol. 2001;43:148–54.

    Article  CAS  PubMed  Google Scholar 

  154. Sowell ER, Thompson PM, Mattson SN, et al. Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex. 2002;12:856–65.

    Article  PubMed  Google Scholar 

  155. Sowell ER, Thompson PM, Peterson BS, Mattson SN, Welcome SE, Henkenius AL, et al. Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. NeuroImage. 2002;17(4):1807–19.

    Article  PubMed  Google Scholar 

  156. Autti-Rämö I, Autti T, Korkman M, Kettunen S, Salonen O, Valanne L. MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol. 2002;44(2):98–106.

    Article  PubMed  Google Scholar 

  157. Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, Toga AW. Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport. 2001;12(3):515–23.

    Article  CAS  PubMed  Google Scholar 

  158. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I–V. Alcohol Clin Exp Res. 1996;20(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  159. O’Hare ED, Kan E, Yoshii J, et al. Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport. 2005;16:1285–90.

    Article  PubMed  Google Scholar 

  160. Bookstein FL, Streissguth AP, Connor PD, Sampson PD. Damage to the human cerebellum from prenatal alcohol exposure: the anatomy of a simple biometrical explanation. Anat Rec B New Anat. 2006;289(5):195–209.

    Article  PubMed  Google Scholar 

  161. Chen X, Coles CD, Lynch ME, Hu X. Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Hum Brain Mapp. 2012;33:1663–76.

    Article  PubMed  Google Scholar 

  162. Cardenas VA, Price M, Infante MA, Moore EM, Mattson SN, Riley EP, Fein G. Automated cerebellar segmentation: validation and application to detect smaller volumes in children prenatally exposed to alcohol. Neuroimage Clin. 2014;4:295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sulik KK, Lauder JM, Dehart DB. Brain malformations in prenatal mice following acute maternal ethanol administration. Int J Dev Neurosci. 1984;2(3):203–14.

    Article  CAS  PubMed  Google Scholar 

  164. Sulik KK. Genesis of alcohol-induced craniofacial dysmorphism. Exp Biol Med (Maywood). 2005;230(6):366–75.

    Article  CAS  Google Scholar 

  165. Nathaniel EJ, Nathaniel DR, Mohamed S, Nathaniel L, Kowalzik C, Nahnybida L. Prenatal ethanol exposure and cerebellar development in rats. Exp Neurol. 1986;93(3):601–9.

    Article  CAS  PubMed  Google Scholar 

  166. Nathaniel EJ, Nathaniel DR, Mohamed SA, Nahnybida L, Nathaniel L. Growth patterns of rat body, brain, and cerebellum in fetal alcohol syndrome. Exp Neurol. 1986;93(3):610–20. te

    Article  CAS  PubMed  Google Scholar 

  167. Lancaster F, Samorajski T. Prenatal ethanol exposure decreases synaptic density in the molecular layer of the cerebellum. Alcohol Alcohol Suppl. 1987;1:477–80.

    CAS  PubMed  Google Scholar 

  168. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–47.

    Article  CAS  PubMed  Google Scholar 

  169. Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature. 2001;412:198–202.

    Article  CAS  PubMed  Google Scholar 

  170. Sawant OB, Lunde ER, Washburn SE, Chen WJ, Goodlett CR, Cudd TA. Different patterns of regional Purkinje cell loss in the cerebellar vermis as a function of the timing of prenatal ethanol exposure in an ovine model. Neurotoxicol Teratol. 2013;35:7–13.

    Article  CAS  PubMed  Google Scholar 

  171. de la Monte SM, Wands JR. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci. 2002;59(5):882–93.

    Article  PubMed  Google Scholar 

  172. de la Monte SM, Wands JR. Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J Popul Ther Clin Pharmacol. 2010;17(3):e390–404. Epub 2010 Oct 26

    PubMed  PubMed Central  Google Scholar 

  173. de la Monte SM, Tong M, Carlson RI, Carter JJ, Longato L, Silbermann E, Wands JR. Ethanol inhibition of aspartyl-asparaginyl-beta-hydroxylase in fetal alcohol spectrum disorder: potential link to the impairments in central nervous system neuronal migration. Alcohol. 2009;43(3):225–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Tong M, Ziplow J, Chen WC, Nguyen QG, Kim C, de la Monte SM. Motor function deficits following chronic prenatal ethanol exposure are linked to impairments in insulin/IGF, notch and Wnt signaling in the cerebellum. J Diabetes Metab. 2013;4(1):238.

    PubMed  PubMed Central  Google Scholar 

  175. Thomas JD, Wasserman EA, West JR, Goodlett CR. Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: importance of developmental timing and number of episodes. Dev Psychobiol. 1996;29(5):433–52.

    Article  CAS  PubMed  Google Scholar 

  176. du Plessis L, Jacobson JL, Jacobson SW, Hess AT, van der Kouwe A, Avison MJ, et al. An in vivo 1H magnetic resonance spectroscopy study of the deep cerebellar nuclei in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2014;38(5):1330–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Fan J, Meintjes EM, Molteno CD, Spottiswoode BS, Dodge NC, Alhamud AA, Stanton ME, Peterson BS, Jacobson JL, Jacobson SW. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Hum Brain Mapp. 2015;36(7):2470–82.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  179. Steinlin M. The cerebellum in cognitive processes: supporting studies in children. Cerebellum. 2007;6(3):237–41.

    Article  PubMed  Google Scholar 

  180. Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613–34.

    Article  CAS  PubMed  Google Scholar 

  181. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. NeuroImage. 2016;124(Pt A):248–55.

    Article  PubMed  Google Scholar 

  182. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.

    Article  CAS  PubMed  Google Scholar 

  184. Ornoy A, Weinstein-Fudim L, Ergaz Z. Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Front Neurosci. 2016;10:316.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Simmons RW, Nguyen TT, Levy SS, Thomas JD, Mattson SN, Riley EP. Children with heavy prenatal alcohol exposure exhibit deficits when regulating isometric force. Alcohol Clin Exp Res. 2012;36(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  186. Simmons RW, Thomas JD, Levy SS, Riley EP. Motor response programming and movement time in children with heavy prenatal alcohol exposure. Alcohol. 2010;44(4):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chudley AE. Genetic factors in fetal alcohol spectrum disorder. In: Riley E, Clarren S, Weinberg J, Jonsson E, editors. Fetal alcohol syndrome disorder. Management and policy perspectives of FASD. New York: Wiley/Blackwell; 2011. p. 109–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert E. Chudley MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chudley, A.E. (2017). Teratogenic Influences on Cerebellar Development. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59749-2_14

Download citation

Publish with us

Policies and ethics