Skip to main content

Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges

  • Chapter
  • First Online:
Anisotropic and Shape-Selective Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1448 Accesses

Abstract

Research into shape-selective and anisotropic nanoparticles is generally motivated by the desire to create better materials for a specific application, and therefore, it is critical to understand how and why shape affects nanoscale properties. Such information can be revealed through analytical experimentation, and this chapter describes characterization methods and challenges associated with analyzing anisotropic and shape-selective nanoparticles. Researchers can typically employ commonly available techniques used in materials characterization. However, in the case of anisotropic and shape-selective nanoparticles, greater concern for orientational and/or shape effects and artifacts should be shown during analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, W., and Z.L. Wang. 2007. Scanning Microscopy for Nanotechnology: Techniques and Applications. Berlin: Springer science & business media.

    Google Scholar 

  2. Pennycook, S.J., and P.D. Nellist. 2011. Scanning Transmission Electron Microscopy: Imaging and Analysis. Berlin: Springer Science & Business Media.

    Google Scholar 

  3. Bhushan, B., and O. Marti. 2010. Scanning Probe Microscopy–Principle of Operation, Instrumentation, and Probes. In Springer Handbook of Nanotechnology, pp. 573–617. Berlin: Springer.

    Google Scholar 

  4. Cordeiro, M.A.L., P.A. Crozier, and E.R. Leite. 2012. Anisotropic Nanocrystal Dissolution Observation by in Situ Transmission Electron Microscopy. Nano Letters 12 (11): 5708–5713.

    Article  CAS  Google Scholar 

  5. Angshuman, P., et al. 2016. Observation of the Formation of Anisotropic Silver Microstructures by Evanescent Wave and Electron Microscopy. Nanotechnology 27 (7): 075708.

    Article  CAS  Google Scholar 

  6. Lu, W., et al. 2015. Probing the Anisotropic Behaviors of Black Phosphorus by Transmission Electron Microscopy, Angular-Dependent Raman Spectra, and Electronic Transport Measurements. Applied Physics Letters 107 (2): 021906.

    Article  CAS  Google Scholar 

  7. Carpick, R.W., and M. Salmeron. 1997. Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. Chemical Reviews 97 (4): 1163–1194.

    Article  CAS  Google Scholar 

  8. Rota, A., et al. 2016. AFM-Based Tribological Study of Nanopatterned Surfaces: The Influence of Contact Area Instabilities. Journal of Physics: Condensed Matter 28 (13): 134008.

    CAS  Google Scholar 

  9. Choi, J.S., et al. 2011. Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene. Science 333 (6042): 607.

    Article  CAS  Google Scholar 

  10. Moretti, M., et al. 2013. Reflection-Mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes. Plasmonics 8 (1): 25–33.

    Article  CAS  Google Scholar 

  11. Lintao, C., T. Hitoshi, and K. Tomoji. 2001. Probing Electrical Properties of Oriented DNA by Conducting Atomic Force Microscopy. Nanotechnology 12 (3): 211.

    Article  Google Scholar 

  12. Nardes, A.M., et al. 2007. Microscopic Understanding of the Anisotropic Conductivity of PEDOT: PSS Thin Films. Advanced Materials 19 (9): 1196–1200.

    Article  CAS  Google Scholar 

  13. Stöckle, R.M., et al. 2000. Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy. Chemical Physics Letters 318 (1): 131–136.

    Article  Google Scholar 

  14. Schönherr, H., Z. Hruska, and G.J. Vancso. 2000. Toward High Resolution Mapping of Functional Group Distributions at Surface-Treated Polymers by AFM Using Modified Tips. Macromolecules 33 (12): 4532–4537.

    Article  CAS  Google Scholar 

  15. Majumdar, A., J. Carrejo, and J. Lai. 1993. Thermal Imaging Using the Atomic Force Microscope. Applied Physics Letters 62 (20): 2501–2503.

    Article  CAS  Google Scholar 

  16. Zhang, Z., et al. 2016. Tip-Enhanced Raman Spectroscopy. Analytical Chemistry 88 (19): 9328–9346.

    Article  CAS  Google Scholar 

  17. Sonntag, M.D., et al. 2014. Recent Advances in Tip-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry Letters 5 (18): 3125–3130.

    Article  CAS  Google Scholar 

  18. Rostislav, V.L. 2004. Feature-Oriented Scanning Methodology for Probe Microscopy and Nanotechnology. Nanotechnology 15 (9): 1135.

    Article  CAS  Google Scholar 

  19. Pecora, R. 2000. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. Journal of Nanoparticle Research 2 (2): 123–131.

    Article  CAS  Google Scholar 

  20. Aragon, S., and R. Pecora. 1976. Theory of Dynamic Light Scattering from Polydisperse Systems. The Journal of Chemical Physics 64 (6): 2395–2404.

    Article  CAS  Google Scholar 

  21. Rodríguez-Fernández, J., et al. 2007. Dynamic Light Scattering of Short Au Rods with Low Aspect Ratios. The Journal of Physical Chemistry C 111 (13): 5020–5025.

    Article  CAS  Google Scholar 

  22. Lehner, D., H. Lindner, and O. Glatter. 2000. Determination of the Translational and Rotational Diffusion Coefficients of Rodlike Particles Using Depolarized Dynamic Light Scattering. Langmuir 16 (4): 1689–1695.

    Article  CAS  Google Scholar 

  23. Parratt, L.G. 1954. Surface Studies of Solids by Total Reflection of X-rays. Physical Review 95 (2): 359–369.

    Article  Google Scholar 

  24. Holy, V., et al. 1993. X-ray Reflection From Rough Layered Systems. Physical Review B 47 (23): 15896–903.

    Google Scholar 

  25. Ito, Y. 2009. Grazing-Incidence Small-Angle X-ray Scattering Technique for Nanostructure Determination of Surfaces and Interfaces of Thin Films. Rigaku Journal 25 (1): 1–6.

    Google Scholar 

  26. Warren, B.E. 1969. X-ray Diffraction. USA: Courier Corporation.

    Google Scholar 

  27. Scherrer, P. 1918. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918: 98–100.

    Google Scholar 

  28. Holzwarth, U., and N. Gibson. 2011. The Scherrer Equation Versus the ‘Debye-Scherrer Equation’. Nature Nanotechnology 6 (9): 534.

    Google Scholar 

  29. Gordon, T.R., et al. 2015. Characterization of Shape and Monodispersity of Anisotropic Nanocrystals through Atomistic X-ray Scattering Simulation. Chemistry of Materials 27 (7): 2502–2506.

    Article  CAS  Google Scholar 

  30. Wagner, F. 1999. Texture Determination by Using X ray Diffraction. In Characterization Techniques of Glasses and Ceramics, ed, J.M. Rincon and M. Romero, pp. 169–186. Berlin: Springer.

    Google Scholar 

  31. Melanie, K., et al. 2007. Solid Au Nanoparticles as a Catalyst for Growing Aligned ZnO Nanowires: A New Understanding of the Vapour–Liquid–Solid Process. Nanotechnology 18 (36): 365304.

    Article  CAS  Google Scholar 

  32. Baker, J.L., et al. 2010. Quantification of Thin Film Crystallographic Orientation Using X-ray Diffraction with an Area Detector. Langmuir 26 (11): 9146–9151.

    Article  CAS  Google Scholar 

  33. Kruszynska, M., et al. 2010. Synthesis and Shape Control of CuInS2 Nanoparticles. Journal of the American Chemical Society 132 (45): 15976–15986.

    Article  CAS  Google Scholar 

  34. Gu, E., et al. 1999. Two-Dimensional Paramagnetic-Ferromagnetic Phase Transition and Magnetic Anisotropy in Co(110) Epitaxial Nanoparticle Arrays. Physical Review B 60 (6): 4092–4095.

    Article  CAS  Google Scholar 

  35. Shima, T., et al. 2006. Formation of Octahedral FePt Nanoparticles by Alternate Deposition of FePt and MgO. Applied Physics Letters 88 (6): 063117.

    Article  CAS  Google Scholar 

  36. Hanada, T., et al. 2001. Anisotropic Shape of Self-Assembled in As Quantum Dots: Refraction Effect on Spot Shape of Reflection High-Energy Electron Diffraction. Physical Review B 64 (16): 165307.

    Article  CAS  Google Scholar 

  37. Williams, D.B., and C.B. Carter. 1996. The Transmission Electron Microscope. In Transmission Electron Microscopy, pp. 3–17. Berlin: Springer.

    Google Scholar 

  38. Kumar, C.S. 2013. Transmission Electron Microscopy Characterization of Nanomaterials. Berlin: Springer Science & Business Media.

    Google Scholar 

  39. Lee, S.-M., et al. 2002. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks. Journal of the American Chemical Society 124 (38): 11244–11245.

    Article  CAS  Google Scholar 

  40. Guiton, B.S., et al. 2005. Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections. Journal of the American Chemical Society 127 (2): 498–499.

    Article  CAS  Google Scholar 

  41. Wang, Z.-l., and C. Hui. 2013. Electron Microscopy of Nanotubes. Berlin: Springer Science & Business Media.

    Google Scholar 

  42. Bogner, A., et al. 2005. Wet STEM: A New Development in Environmental SEM for Imaging Nano-Objects Included in a Liquid Phase. Ultramicroscopy 104 (3–4): 290–301.

    Article  CAS  Google Scholar 

  43. de Jonge, N., and F.M. Ross. 2011. Electron Microscopy of Specimens in Liquid. Nature Nanotechnology 6 (11): 695–704.

    Article  CAS  Google Scholar 

  44. Sutter, E., et al. 2014. In Situ Liquid-Cell Electron Microscopy of Silver–Palladium Galvanic Replacement Reactions on Silver Nanoparticles. Nature communications 5.

    Google Scholar 

  45. De Yoreo, J.J., and N. Sommerdijk. 2016. Investigating Materials Formation with Liquid-Phase and Cryogenic TEM. Nature Reviews Materials 1: 16035.

    Article  CAS  Google Scholar 

  46. Kumar, C.S. 2013. UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Berlin: Springer.

    Google Scholar 

  47. Kumar, C.S. 2012. Raman Spectroscopy for Nanomaterials Characterization. Berlin: Springer Science & Business Media.

    Google Scholar 

  48. Haug, H., and S.W. Koch. 2004. Quantum Theory of the Optical and Electronic Properties of Semiconductors (Vol. 5). Singapore: World Scientific.

    Google Scholar 

  49. Krahne, R., et al. 2013. Optical Properties of Semiconductor Nanorods. In Physical Properties of Nanorods, pp. 7–55. Berlin: Springer.

    Google Scholar 

  50. Li, L.-S., et al. 2001. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters 1 (7): 349–351.

    Article  CAS  Google Scholar 

  51. Yu, H., et al. 2003. Two- Versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots. Nature Materials 2 (8): 517–520.

    Article  CAS  Google Scholar 

  52. Bouet, C., et al. 2013. Flat Colloidal Semiconductor Nanoplatelets. Chemistry of Materials 25 (8): 1262–1271.

    Article  CAS  Google Scholar 

  53. Duan, J., L. Song, and J. Zhan. 2009. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg2+ -sensitive properties. Nano Research 2 (1): 61–68.

    Article  CAS  Google Scholar 

  54. Scher, J.A., J.M. Elward, and A. Chakraborty. 2016. Shape Matters: Effect of 1D, 2D, and 3D Isovolumetric Quantum Confinement in Semiconductor Nanoparticles. The Journal of Physical Chemistry C 120 (43): 24999–25009.

    Article  CAS  Google Scholar 

  55. Krahne, R., et al. 2006. Confinement Effects on Optical Phonons in Polar Tetrapod Nanocrystals Detected by Resonant Inelastic Light Scattering. Nano Letters 6 (3): 478–482.

    Article  CAS  Google Scholar 

  56. Nobile, C., et al. 2007. Confinement Effects on Optical Phonons in Spherical, Rod‐, and Tetrapod‐Shaped Nanocrystals Detected by Raman Spectroscopy. physica status solidi (a) 204 (2): 483–6.

    Google Scholar 

  57. Holger, L., et al. 2009. Geometry Dependence of the Phonon Modes in CdSe Nanorods. Nanotechnology 20 (4): 045705.

    Article  CAS  Google Scholar 

  58. Saviot, L., and D.B. Murray. 2009. Acoustic Vibrations of Anisotropic Nanoparticles. Physical Review B 79 (21): 214101.

    Article  CAS  Google Scholar 

  59. Wheaton, S., R.M. Gelfand, and R. Gordon. 2015. Probing the Raman-Active Acoustic Vibrations of Nanoparticles with Extraordinary Spectral Resolution. Nature Photonics 9 (1): 68–72.

    Article  CAS  Google Scholar 

  60. Maier, S.A. 2007. Plasmonics: Fundamentals and Applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  61. Link, S., and M.A. El-Sayed. 1999. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 103 (40): 8410–8426.

    Article  CAS  Google Scholar 

  62. Hsu, S.-W., K. On, and A.R. Tao. 2011. Localized Surface Plasmon Resonances of Anisotropic Semiconductor Nanocrystals. Journal of the American Chemical Society 133 (47): 19072–19075.

    Article  CAS  Google Scholar 

  63. Zuo, J., et al. 1994. Study of the Raman spectrum of nanometer SnO2. Journal of Applied Physics 75 (3): 1835–1836.

    Article  CAS  Google Scholar 

  64. Spanier, J.E., et al. 2001. Size-Dependent Properties of ${\mathrm{CeO}}_{2-y}$ Nanoparticles as Studied by Raman Scattering. Physical Review B 64 (24): 245407.

    Article  CAS  Google Scholar 

  65. Hearne, G.R., et al. 2004. Effect of Grain Size on Structural Transitions in Anatase TiO2: A Raman Spectroscopy Study at High Pressure. Physical Review B 70 (13): 134102.

    Article  CAS  Google Scholar 

  66. Alim, K.A., V.A. Fonoberov, and A.A. Balandin. 2005. Origin of the Optical Phonon Frequency Shifts in ZnO Quantum Dots. Applied Physics Letters 86 (5): 53103.

    Google Scholar 

  67. Kim, Y.K., and H.M. Jang. 2003. Raman Line-Shape Analysis of Nano-Structural Evolution in Cation-Ordered ZrTiO4-Based Dielectrics. Solid State Communications 127 (6): 433–437.

    Article  CAS  Google Scholar 

  68. Ferrari, A.C., et al. 2006. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 97 (18): 187401.

    Article  CAS  Google Scholar 

  69. Ferrari, A.C. 2007. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications 143 (1–2): 47–57.

    Article  CAS  Google Scholar 

  70. Elias, D.C., et al. 2009. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323 (5914): 610–613.

    Article  CAS  Google Scholar 

  71. Lee, K.-S., and M.A. El-Sayed. 2005. Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. The Journal of Physical Chemistry B 109 (43): 20331–20338.

    Article  CAS  Google Scholar 

  72. Jain, P.K., S. Eustis, and M.A. El-Sayed. 2006. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. The Journal of Physical Chemistry B 110 (37): 18243–18253.

    Article  CAS  Google Scholar 

  73. Schmucker, A.L., et al. 2010. Correlating Nanorod Structure with Experimentally Measured and Theoretically Predicted Surface Plasmon Resonance. ACS Nano 4 (9): 5453–5463.

    Article  CAS  Google Scholar 

  74. Near, R.D., S.C. Hayden, and M.A. El-Sayed. 2013. Thin to Thick, Short to Long: Spectral Properties of Gold Nanorods by Theoretical Modeling. The Journal of Physical Chemistry C 117 (36): 18653–18656.

    Article  CAS  Google Scholar 

  75. Umar, A., and S.-M. Choi. 2013. Aggregation Behavior of Oppositely Charged Gold Nanorods in Aqueous Solution. The Journal of Physical Chemistry C 117 (22): 11738–11743.

    Article  CAS  Google Scholar 

  76. Wang, C., et al. 2007. Biorecognition-Driven Self-Assembly of Gold Nanorods: A Rapid and Sensitive Approach Toward Antibody Sensing. Chemistry of Materials 19 (24): 5809–5811.

    Article  CAS  Google Scholar 

  77. Jackson, J.D. 1999. Classical Electrodynamics. New Jersey: Wiley.

    Google Scholar 

  78. Jones, R.C. 1941. A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus. JOSA 31 (7): 488–93.

    Google Scholar 

  79. Sönnichsen, C., and A.P. Alivisatos. 2005. Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy. Nano Letters 5 (2): 301–304.

    Article  CAS  Google Scholar 

  80. Nehl, C.L., H. Liao, and J.H. Hafner. 2006. Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters 6 (4): 683–688.

    Article  CAS  Google Scholar 

  81. Gansel, J.K., et al. 2009. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 325 (5947): 1513–1515.

    Article  CAS  Google Scholar 

  82. Larsen, G.K., et al. 2014. Scalable Fabrication of Composite Ti/Ag Plasmonic Helices: Controlling Morphology and Optical Activity by Tailoring Material Properties. Advanced Optical Materials 2 (3): 245–249.

    Article  CAS  Google Scholar 

  83. Titus, J., et al. 2016. Large Circular Dichroism and Optical Rotation in Titanium Doped Chiral Silver Nanorods. Annalen der Physik 528 (9–10): 677–683.

    Article  CAS  Google Scholar 

  84. Zhang, Z.-Y., and Y.-P. Zhao. 2007. Optical Properties of Helical Ag Nanostructures Calculated by Discrete Dipole Approximation Method. Applied Physics Letters 90 (22): 221501.

    Article  CAS  Google Scholar 

  85. Schäferling, M., et al. 2014. Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics 1 (6): 530–537.

    Article  CAS  Google Scholar 

  86. Gansel, J.K., et al. 2010. Gold Helix Photonic Metamaterials: A Numerical Parameter Study. Optics Express 18 (2): 1059–1069.

    Article  CAS  Google Scholar 

  87. Hu, J., et al. 2001. Linearly Polarized Emission From Colloidal Semiconductor Quantum Rods. Science 292 (5524): 2060–2063.

    Article  CAS  Google Scholar 

  88. Hikmet, R.A., et al. 2005. Polarized-Light-Emitting Quantum-Rod Diodes. Advanced Materials 17 (11): 1436–1439.

    Article  CAS  Google Scholar 

  89. Bruhn, B., J. Valenta, and J. Linnros. 2009. Controlled Fabrication of Individual Silicon Quantum Rods Yielding High Intensity, Polarized Light Emission. Nanotechnology 20 (50): 505301.

    Article  CAS  Google Scholar 

  90. Hrudey, P.C.P., K.L. Westra, and M.J. Brett. 2006. Highly Ordered Organic Alq3 Chiral Luminescent Thin Films Fabricated by Glancing-Angle Deposition. Advanced Materials 18 (2): 224–228.

    Article  CAS  Google Scholar 

  91. Naito, M., et al. 2010. Circularly Polarized Luminescent CdS Quantum Dots Prepared in a Protein Nanocage. Angewandte Chemie International Edition 49 (39): 7006–7009.

    Article  CAS  Google Scholar 

  92. Singh, H.J., et al. 2016. Circular Differential Two-Photon Luminescence from Helically Arranged Plasmonic Nanoparticles. ACS Photonics 3 (5): 863–868.

    Article  CAS  Google Scholar 

  93. Kumar, J., T. Kawai, and T. Nakashima. 2017. Circularly Polarized Luminescence in Chiral Silver Nanoclusters. Chemical Communications.

    Google Scholar 

  94. Rao, A., et al. 2000. Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes. Physical Review Letters 84 (8): 1820.

    Article  CAS  Google Scholar 

  95. Cançado, L., et al. 2004. Anisotropy of the Raman Spectra of Nanographite Ribbons. Physical Review Letters 93 (4): 047403.

    Article  CAS  Google Scholar 

  96. Schäfer-Nolte, E., et al. 2010. Highly Polarized Raman Scattering Anisotropy in Single GaN Nanowires. Applied Physics Letters 96 (9): 091907.

    Article  CAS  Google Scholar 

  97. Acevedo, R., et al. 2009. Plasmonic Enhancement of Raman Optical Activity in Molecules Near Metal Nanoshells. The Journal of Physical Chemistry A 113 (47): 13173–13183.

    Article  CAS  Google Scholar 

  98. Fasman, G.D. 2013. Circular Dichroism and the Conformational Analysis of Biomolecules. Berlin: Springer Science & Business Media.

    Google Scholar 

  99. Fan, Z., and A.O. Govorov. 2010. Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies. Nano Letters 10 (7): 2580–2587.

    Article  CAS  Google Scholar 

  100. Slocik, J.M., A.O. Govorov, and R.R. Naik. 2011. Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles. Nano Letters 11 (2): 701–705.

    Article  CAS  Google Scholar 

  101. Kuzyk, A., et al. 2012. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 483 (7389): 311–314.

    Article  CAS  Google Scholar 

  102. Schellman, J., and H.P. Jensen. 1987. Optical Spectroscopy of Oriented Molecules. Chemical Reviews 87 (6): 1359–1399.

    Article  CAS  Google Scholar 

  103. Lu, S.-Y., and R.A. Chipman. 1994. Homogeneous and Inhomogeneous Jones Matrices. Journal of the Optical Society of America A 11 (2): 766–773.

    Article  Google Scholar 

  104. Arteaga, O., and A. Canillas. 2009. Pseudopolar Decomposition of the Jones and Mueller-Jones Exponential Polarization Matrices. Journal of the Optical Society of America A 26 (4): 783–793.

    Article  Google Scholar 

  105. Arteaga, O., and A. Canillas. 2010. Analytic Inversion of the Mueller-Jones Polarization Matrices for Homogeneous Media. Optics Letters 35 (4): 559–561.

    Article  Google Scholar 

  106. Larsen, G.K., and Y. Zhao. 2014. Extracting the Anisotropic Optical Parameters of Chiral Plasmonic Nanostructured Thin Films Using Generalized Ellipsometry. Applied Physics Letters 105 (7): 071109.

    Article  CAS  Google Scholar 

  107. Frota, H.O., and A. Ghosh. 2012. NMR of Localized Magnetic States in Graphene. Physica B: Condensed Matter 407 (7): 1170–1174.

    Article  CAS  Google Scholar 

  108. Nelson, D.J., and R. Kumar. 2013. Characterizing Covalently Sidewall-Functionalized Single-Walled Carbon Nanotubes by Using 1H NMR Spectroscopy. The Journal of Physical Chemistry C 117 (28): 14812–14823.

    Article  CAS  Google Scholar 

  109. Freitas, J.C., et al. 2015. Determination of the Hyperfine Magnetic Field in Magnetic Carbon-Based Materials: DFT Calculations and NMR Experiments. Scientific reports, 2015. 5.

    Google Scholar 

  110. MacIntosh, A.R., K.J. Harris, and G.R. Goward. 2016. Structure and Dynamics in Functionalized Graphene Oxides through Solid-State NMR. Chemistry of Materials 28 (1): 360–367.

    Article  CAS  Google Scholar 

  111. Zhan, Q.-F., et al. 2004. Applied Field Mössbauer Study of Shape Anisotropy in Fe Nanowire Arrays. Applied Physics Letters 85 (20): 4690–4692.

    Article  CAS  Google Scholar 

  112. Liu, F.X., et al. 1999. Quantum Size and composition Effects in Photoacoustic Spectra of FexZr1 − xO2 clusters. Journal of Applied Physics 85 (2): 734–738.

    Article  CAS  Google Scholar 

  113. Mohamed, M.B., C. Burda, and M.A. El-Sayed. 2001. Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals: Nanorods vs Nanodots. Nano Letters 1 (11): 589–593.

    Article  CAS  Google Scholar 

  114. Seo, M.A., et al. 2011. Polarization Anisotropy of Transient Carrier Dynamics in Single Si Nanowires. In CLEO: 2011—Laser Science to Photonic Applications.

    Google Scholar 

  115. Wu, K., H. Zhu, and T. Lian. 2015. Ultrafast Exciton Dynamics and Light-Driven H2 Evolution in Colloidal Semiconductor Nanorods and Pt-Tipped Nanorods. Accounts of Chemical Research 48 (3): 851–859.

    Article  CAS  Google Scholar 

  116. Ge, S., et al. 2015. Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation. Nano Letters 15 (7): 4650–4656.

    Article  CAS  Google Scholar 

  117. Varnavski, O.P., et al. 2003. Relative Enhancement of Ultrafast Emission in Gold Nanorods. The Journal of Physical Chemistry B 107 (14): 3101–3104.

    Article  CAS  Google Scholar 

  118. Varnavski, O.P., et al. 2005. Femtosecond Excitation Dynamics in Gold Nanospheres and Nanorods. Physical Review B 72 (23): 235405.

    Article  CAS  Google Scholar 

  119. Sönnichsen, C., et al. 2002. Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 88 (7): 077402.

    Article  CAS  Google Scholar 

  120. Klein, D.L., et al. 1996. An Approach to Electrical Studies of Single Nanocrystals. Applied Physics Letters 68 (18): 2574–2576.

    Article  CAS  Google Scholar 

  121. Wernsdorfer, W., D. Mailly, and A. Benoit. 2000. Single Nanoparticle Measurement Techniques. Journal of Applied Physics 87 (9): 5094–5096.

    Article  CAS  Google Scholar 

  122. Johnson, J.C., et al. 2001. Single Nanowire Lasers. The Journal of Physical Chemistry B 105 (46): 11387–11390.

    Article  CAS  Google Scholar 

  123. Gambardella, P., et al. 2003. Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles. Science 300 (5622): 1130–1133.

    Article  CAS  Google Scholar 

  124. Zijlstra, P., et al. 2008. Acoustic Oscillations and Elastic Moduli of Single Gold Nanorods. Nano Letters 8 (10): 3493–3497.

    Article  CAS  Google Scholar 

  125. Doerk, G.S., C. Carraro, and R. Maboudian. 2010. Single Nanowire Thermal Conductivity Measurements by Raman Thermography. ACS Nano 4 (8): 4908–4914.

    Article  CAS  Google Scholar 

  126. Long, Y., et al. 2009. Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results. Nanoscale Research Letters 5 (1): 237.

    Article  CAS  Google Scholar 

  127. Li, D., et al. 2003. Thermal Conductivity of Individual Silicon Nanowires. Applied Physics Letters 83 (14): 2934–2936.

    Article  CAS  Google Scholar 

  128. Zhang, D., et al. 2004. Detection of NO2 Down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters 4 (10): 1919–1924.

    Article  CAS  Google Scholar 

  129. Li, Q.H., et al. 2004. Electronic Transport Through Individual ZnO Nanowires. Applied Physics Letters 84 (22): 4556–4558.

    Article  CAS  Google Scholar 

  130. Samitsu, S., et al. 2005. Conductivity Measurements of Individual poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) Nanowires on Nanoelectrodes Using Manipulation with an Atomic Force Microscope. Applied Physics Letters 86 (23): 233103.

    Article  CAS  Google Scholar 

  131. Fujii, M., et al. 2005. Measuring the Thermal Conductivity of a Single Carbon Nanotube. Physical Review Letters 95 (6): 065502.

    Article  CAS  Google Scholar 

  132. Boukai, A., K. Xu, and J.R. Heath. 2006. Size-Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires. Advanced Materials 18 (7): 864–869.

    Article  CAS  Google Scholar 

  133. Kuang, Q., et al. 2007. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire. Journal of the American Chemical Society 129 (19): 6070–6071.

    Article  CAS  Google Scholar 

  134. Choy, T.C. 2015. Effective Medium Theory: Principles and Applications (Vol. 165). Oxford: Oxford University Press.

    Google Scholar 

  135. Berthier, S. 1994. Anisotropic Effective Medium Theories. Journal de Physique I 4 (2): 303–318.

    Article  CAS  Google Scholar 

  136. Zhou, X.F., and L. Gao. 2006. Effective Thermal Conductivity in Nanofluids of Nonspherical Particles with Interfacial Thermal Resistance: Differential Effective Medium Theory. Journal of Applied Physics 100 (2): 024913.

    Article  CAS  Google Scholar 

  137. Garcia-Vidal, F., J. Pitarke, and J. Pendry. 1997. Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes. Physical Review Letters 78 (22): 4289.

    Article  CAS  Google Scholar 

  138. Hornby, B.E., L.M. Schwartz, and J.A. Hudson. 1994. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales. Geophysics 59 (10): 1570–1583.

    Article  Google Scholar 

  139. Song, C., G.K. Larsen, and Y. Zhao. 2013. Anisotropic Resistivity of Tilted Silver Nanorod Arrays: Experiments and Modeling. Applied Physics Letters 102 (23): 233101.

    Article  CAS  Google Scholar 

  140. Bradley, L., G. Larsen, and Y. Zhao. 2016. Designed to Fail: Flexible, Anisotropic Silver Nanorod Sheets for Low-Cost Wireless Activity Monitoring. The Journal of Physical Chemistry C 120 (27): 14969–14976.

    Article  CAS  Google Scholar 

  141. Hornung, U. 2012. Homogenization and Porous Media (Vol. 6). Berlin: Springer Science & Business Media.

    Google Scholar 

  142. Che, J., T. Cagin, and W.A. Goddard III. 2000. Thermal Conductivity of Carbon Nanotubes. Nanotechnology 11 (2): 65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Larsen, G.K. (2017). Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_4

Download citation

Publish with us

Policies and ethics