Skip to main content

2D Gauss-Hermite Quadrature Method for Jump-Diffusion PIDE Option Pricing Models

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2
  • 1502 Accesses

Abstract

Gauss-Hermite quadrature together with a finite difference method is used to solve numerically jump-diffusion two-asset option pricing problem consisting in a partial integro-differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Books on Mathematics, New York (1961)

    MATH  Google Scholar 

  2. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stoch. 2, 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clift, S.S., Forsyth, P.A.: Numerical solution of two asset jump diffusion models for option valuation. Appl. Numer. Math. 58, 743–782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Finance Mathematical Series. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  5. Duffy, D.J.: Finite Difference Methods in Financial Engineering: A Partial Differential Approach. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  6. Dupire, B.: Arbitrage pricing with stochastic volatility. Technical Report, Banque Paribas Swaps and Options Research Team Monograph (1993)

    Google Scholar 

  7. Ehrhardt, M., Mickens, R.A.: A fast, stable and accurate numerical method for the Black–Scholes equation of American options. Int. J. Theor. Appl. Finance 11, 471–501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fakharany, M., Company, R., Jódar, L.: Positive finite difference schemes for partial integro-differential option pricing model. Appl. Math. Comput. 249, 320–332 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Fakharany, M., Company, R., Jódar, L.: Solving partial integro-differential option pricing problems for a wide class of infinite activity Lévy processes. J. Comput. Appl. Math. 296, 739–752 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garabedian, P.R.: Partial Differential Equations. AMS Chelsea Pubs. Co., Providence, R.I. (1998)

    MATH  Google Scholar 

  11. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  12. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rambeerich, N., Tangman, D.Y., Lollchund, M.R., Bhuruth, M.: High-order computational methods for option valuation under multifactor models. Eur. J. Oper. Res. 224, 219–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  15. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Negative coefficients in two-factor option pricing models. J. Comput. Finance 7 (1), 37–73 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economía y Competitividad Spanish grant MTM2013-41765-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jódar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jódar, L., Fakharany, M., Company, R. (2017). 2D Gauss-Hermite Quadrature Method for Jump-Diffusion PIDE Option Pricing Models. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_14

Download citation

Publish with us

Policies and ethics