Skip to main content

Rhizobial Exopolysaccharides: A Novel Biopolymer for Legume-Rhizobia Symbiosis and Environmental Monitoring

  • Chapter
  • First Online:
Microbes for Legume Improvement

Abstract

Extracellular polymeric substances produced by microorganisms are a complex mixture of biopolymers mainly consisting of polysaccharides along with fewer amounts of proteins, nucleic acids, uronic acids, lipids, and humic substances. Biopolymers secreted by microorganisms are considered as a potential alternative over conventional chemical polymers because of their easy biodegradability, nontoxicity, and renewable nature. Exopolysaccharides (EPSs) released by rhizobia play a pivotal role in both establishment of effective symbiosis with leguminous plants and adaptation to environmental stresses. Moreover, low-molecular-weight fraction of this polysaccharide acts as a signal molecule in the symbiotic dialogue. Besides these, EPSs extracted from different microbes have been recognized as a sustainable flocculant for their application in different types of wastewater treatment. EPS has also been considered as a good bioemulsifier for different hydrocarbons. Microbial EPSs have also been found useful in removal of pollutants from contaminated sites. In this chapter, the role of rhizobial EPS in developing effective legume-rhizobia symbiosis is discussed. Also, the role of EPS secreted by root-nodulating bacteria in remediation of heavy metals and hydrocarbon degradation has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amemura A et al (1983) Structural studies on the extracellular acidic polysaccharide from Rhizobium trifolii 4S. Carbohydr Res 115:165–174

    Article  CAS  Google Scholar 

  • Banal IM, Makkar RS, Camcotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  Google Scholar 

  • Bhattacharyya R, Das S (2015) Exopolysaccharide production by a Rhizobium sp. from root nodules of Phaseolus mungo (L.) in heavy metal stress condition. Indian Biol 47:53–59

    Google Scholar 

  • Chaterjee A, Das D, Mandal BK (1995) Arsenic in groundwater in six districts of West Bengal, India. The biggest arsenic calamity in the world. Part 1. Arsenic species in drinking water and urine of affected people. Analyst 120:643–650

    Article  CAS  Google Scholar 

  • Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cremers HCC, Stevens K, Lugtenberg BJ, Wijffelman CA, Batley M, Redmond JW, Zevenhuizen LP (1991) Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248. Carbohydr Res 218:185–200

    Article  CAS  Google Scholar 

  • D’Haeze W, Glushka J, DeRycke R, Holsters M, Carlson RW (2004) Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 52:485–500

    Article  PubMed  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentration in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401

    Article  PubMed  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Barnes M (ed) Oceanography marine biology annual review. Aberdeen University Press, Aberdeen, pp 73–153

    Google Scholar 

  • Djordjevic SP, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34(2):150–170

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790

    Article  CAS  PubMed  Google Scholar 

  • Ford T, Sacco E, Black J, Kelley T, Goodacre R (1991) Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry. Appl Environ Microbiol 57:1595–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster LJR, Moy YP, Rogers PL (2000) Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnol Lett 22:1757–1760

    Article  CAS  Google Scholar 

  • Fraysse N, François C, Verena P (2003) Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398

    Article  CAS  PubMed  Google Scholar 

  • Gil-Serrano A et al (1990) Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr Res 204:103–107

    Article  CAS  PubMed  Google Scholar 

  • Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378

    Article  PubMed  Google Scholar 

  • Gutierrez T, Shimmield T, Haidon C, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol 74:4867–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez T, Morris G, Green DH (2009) Yield and physicochemical properties of EPS from Halomonas sp. strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of n-hexadecane. Biotechnol Bioeng 103:207–216

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken MD (2013) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill. PLoS One 8:e67717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Du C, Xu Z, Qian H, Zhang W (2016) Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2. Int J Biol Macromol 88:603–613

    Article  CAS  PubMed  Google Scholar 

  • Han P, Sun Y, Wu X, Yuan Y, Dai Y, Jia S (2014) Emulsifying, flocculating, and physiochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme. Appl Biochem Biotechnol 172:36–49

    Article  CAS  PubMed  Google Scholar 

  • He N, Li Y, Chen J (2004) Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum. Bioresour Technol 94:99–105

    Article  CAS  PubMed  Google Scholar 

  • Huang KH, Chen BY, Shen FT, Young CC (2012) Optimization of exopolysaccharide production and diesel oil emulsifying properties in root nodulating bacteria. World J Microbiol Biotechnol 28:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12:7898–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Rachwal K, CieÅ›la J, Ginalska G, Bieganowski A (2015) Production of exopolysaccharide by Rhizobium leguminosarum bv. Trifolii and its role in bacterial attachment and surface properties. Plant and Soil 388:211–227

    Article  CAS  Google Scholar 

  • Janecka J, Jenkins MB, Brackett NS, Lion LW, Ghiorse WC (2002) Characterization of a Sinorhizobium isolate and its extracellular polymer implicated in pollutant transport in soil. Appl Environ Microbiol 68:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszek M, Janczarek M, Kuczynski K, Piersiak T, Grywnowicz K (2014) The response of the Rhizobium leguminosarum bv. trifolii wild type and exopolysachharide deficient mutants to oxidative stress. Plant and Soil 376:75–94

    Article  CAS  Google Scholar 

  • Jefferson KK (2009) Bacterial polysaccharides. In: Ullrich M (ed) Current innovations and future trends. Caister Academic, Norfolk, pp 175–186

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kranthi Kumar G, Raghu Ram M (2014) Phosphate solubilizing Rhizobia isolated from Vigna trilobata. Am J Microbiol Res 2(3):105–109

    Article  Google Scholar 

  • Laus MC, Van Brussel AA, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant Microbe Interact 18:533–538

    Article  CAS  PubMed  Google Scholar 

  • Lepek VC, D’Antuono AL (2005) Bacterial surface polysaccharides and their role in the rhizobia-legume association. Lotus Newslett 35:93–105

    Google Scholar 

  • Liang TW, Wang SL (2015) Recent advances in exopolysachharides from Paenibacillus spp.: production, isolation, structure, and bioactivities. Mar Drugs 13:1847–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Chen X, He H, Zhang X, Xie B, Yu Y, Chen B, Zhou B, Zhang Y (2013) Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol 79:224–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luma JH, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterization, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B Biointerfaces 102:202–209

    Article  Google Scholar 

  • Mandal AK, Yadav KK, Sen IK, Kumar A, Chakraborti S, Ilam SS, Chakraborty R (2013) Partial characterization and flocculating behavior of an exopolysaccharide produced in nutrient-poor medium by a facultative oligotroph Klebsiella sp. PB12. J Biosci Bioeng 115:76–81

    Article  CAS  PubMed  Google Scholar 

  • Martensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24:435–445

    Article  CAS  Google Scholar 

  • Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G (2012) Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ 27(3):234–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Mussarat J, Haseeb A (2000) Agrochemicals as antagonists of lectin mediated Rhizobium legume symbiosis: Paradigms and prospects. Curr Sci 78:793–797

    Google Scholar 

  • Niehaus K, Kapp D, Puhler A (1993) Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS deficient) Rhizobium meliloti mutant. Planta 190:415–425

    Article  CAS  Google Scholar 

  • O’Neill MA, Darvill AG, Albersheim P (1991) The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range. J Biol Chem 266:9549–9555

    PubMed  Google Scholar 

  • Öner ET (2013) Microbial production of extracellular polysaccharides from biomass. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries, green energy and technology. Springer, Berlin, pp 35–56

    Chapter  Google Scholar 

  • Parniske M, Schimdt PE, Kosch K, Muller P (1994) Plant defense response of host plants with determinate nodules induced by EPS defective exo B mutants of Bradyrhizobium japonicum. Mol Plant Microbe Interact 7:631–638

    Article  CAS  Google Scholar 

  • Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301

    Article  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendueles O, Kaplan JB, Ghingo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346

    Article  CAS  PubMed  Google Scholar 

  • Robertsen BK et al (1981) Host-symbiont interactions: V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol 67:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder C, Byrd M, Wozniak DJ (2007) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santschi PH, Guo L, Means JC, Ravichandran M (1998) Natural organic matter binding of trace metal and trace organic contaminants in estuaries. In: Bianchi TS, Pennock JR, Twilley R (eds) Biogeochemistry of Gulf of Mexico estuaries. Wiley, New York, pp 347–380

    Google Scholar 

  • Sathiyanarayanan G, Kiran GS, Selvin J (2013) Synthesis of silver nanoparticles by polysaccharides bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces 102:13–20

    Article  CAS  PubMed  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  • Shih IL, Van YT, Yeh LC, Lin HG, Chang YN (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78:267–272

    Article  CAS  PubMed  Google Scholar 

  • Shuhong Z, Meiping Z, Hong Y, Han W, Shan X, Yan L, Jihui W (2014) Biosorption of Cu2+, Pb2+, and Cr2+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr Polym 101:50–56

    Article  PubMed  Google Scholar 

  • Skorupska A, Janczarek M, Marezak M, Mazur A, Krol J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from gram negative bacteria. Int Dairy J 11:663–674

    Article  CAS  Google Scholar 

  • Ta-Chen L, Chang JS, Young CC (2008) Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett 30:1201–1206

    Article  PubMed  Google Scholar 

  • Vaningelgem F et al (2004) Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol 70:900–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdugo P (1994) Polymer gel phase transition in condensation decondensation of secretory products. Adv Polym Sci 110:145–156

    Article  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314

    Article  CAS  PubMed  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Korber DR (1999) Function of EPS. In: Wingender J, Neu TR, Flemming H-C (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, New York, pp 171–200

    Chapter  Google Scholar 

  • Xie P, Hao X, Mohamad OA, Liang J, Wei C (2013) Comparative study of chromium biosorption by Mesorhizobium amorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 169:570–587

    Article  CAS  PubMed  Google Scholar 

  • Yadav KK, Mandal AK, Sen IK, Chakraborti S, Islam S, Chakraborty R (2012) Flocculating property of extracellular polymeric substances produced by a biofilm forming bacterium Acinetobacter junii BB1A. Appl Biochem Biotechnol 168:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrogen-degrading and surfactant-producing marine bacterium. Int J Syst Evol Microbiol 48:339–348

    CAS  Google Scholar 

  • Yokoi H, Natsuda O, Hirose J, Hayashi S, Takasaka Y (1995) Characteristics of a biopolymer flocculant produced by Bacillus subtilis. J Ferment Bioeng 79:378–380

    Article  CAS  Google Scholar 

  • Yuksekdag ZN, Aslim B (2008) Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii Subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Braz Arch Biol Technol 51:581–585

    Article  Google Scholar 

  • Zahra MK, Fayey M, Hassan ME, Ghalal NM (1990) Symbiosis between Bradyrhizobium japonicum and soybean (Glycine max) in different soils. Egypt J Microbiol 25:181–196

    Google Scholar 

  • Zhang ZQ, Bo L, Xia SQ, Wang XJ, Yang AM (2007) Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J Environ Sci 19:667–673

    Article  Google Scholar 

  • Ziervogel K, McKay L, Rhodes B, Osburn CL, Dickson-Brown J (2012) Microbial activities and dissolved organic matter dynamics in oil contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS One 7:e34816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zogaj X et al (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindranath Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bhattacharyya, R., Das, S., Bhattacharya, R., Chatterjee, M., Dey, A. (2017). Rhizobial Exopolysaccharides: A Novel Biopolymer for Legume-Rhizobia Symbiosis and Environmental Monitoring. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_5

Download citation

Publish with us

Policies and ethics