Skip to main content

Studying the Complexity of Rainfall Within California Via a Fractal Geometric Method

  • Chapter
  • First Online:
Advances in Nonlinear Geosciences

Abstract

A deterministic geometric approach, the fractal–multifractal (FM) method, useful in modeling storm events and recently adapted in order to encode highly intermittent daily rainfall records, is employed to study the complexity of rainfall sets within California. Specifically, sets—from south to north—at Cherry Valley, Merced, Sacramento and Shasta Dam and containing, respectively 59, 116, 115, and 72 years, all ending at water year 2015, are studied. The analysis reveals that: (a) the FM approach provides faithful encodings of all records, by years, with mean square and maximum errors in accumulated rain that are less than a mere 2 and 10%, respectively; (b) the evolution of the corresponding “best” FM parameters, allowing visualization of the inter-annual rainfall dynamics from a reduced vantage point, exhibit a highly entropic variation that prevents discriminating between sites and extrapolating to the future; and (c) the rain signals at all sites may be termed “equally complex,” as usage of k-means clustering and conventional phase-space analysis of FM parameters yields comparable results for all sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arthur, D., and V. Sergi. 2007. K-means++: The advantages of careful seeding. In SODA ’07 proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, 1027–1035.

    Google Scholar 

  • Barnsley, M.F. 1988. Fractals everywhere. San Diego: Academic Press.

    Google Scholar 

  • Beven, K. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320 (1): 18–36.

    Article  Google Scholar 

  • Cortis, A., C.E. Puente, and B. Sivakumar. 2009. Nonlinear extensions of a fractal-multifractal approach for environmental modeling. Stochastic Environmental Research and Risk Assessment 23 (7): 897–906.

    Article  Google Scholar 

  • Cortis, A., C.E. Puente, H.H. Huang, M.L. Maskey, B. Sivakumar, and N. Obregón. 2013. A physical interpretation of the deterministic fractal-multifractal method as a realization of a generalized multiplicative cascade. Stochastic Environmental Research and Risk Assessment 28 (6): 1421–1429.

    Article  Google Scholar 

  • Dhanya, C.T., and D.N. Kumar. 2010. Nonlinear ensemble prediction of chaotic daily rainfall. Advances in Water Resources 33 (3): 327–347.

    Article  Google Scholar 

  • French, M.N., W.F. Krajewski, and R.R. Cuykendall. 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137 (1-4): 1–31.

    Article  Google Scholar 

  • Ghilardi, P., and R. Rosso. 1990. Comment on “Chaos in rainfall” by I. Rodríguez -Iturbe et al. Water Resource Research 26 (8): 1837–1839.

    Google Scholar 

  • Gupta, V.K., and E. Waymire. 1990. Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research 95 (D3): 1999–2009.

    Article  Google Scholar 

  • Hey, T., T. Stewart, and M.T. Kristin. 2009. The fourth paradigm: Data-intensive scientific discovery. Vol 1., Redmond, WA: Microsoft Research.

    Google Scholar 

  • Hill, M.C., and C.R. Tiedeman. 2007. Effective groundwater model calibration: With analysis of data, sensitivities, predictions and uncertainty. Hoboken, NJ: John Wiley & Sons, Inc..

    Book  Google Scholar 

  • Huang, H.H., A. Cortis, and C.E. Puente. 2012a. Geometric harnessing of precipitation records: reexamining four storms from Iowa City. Stochastic Environmental Research and Risk Assessment 27 (4): 955–968.

    Article  Google Scholar 

  • Huang, H.H., C.E. Puente, A. Cortis, and B. Sivakumar. 2012b. Closing the loop with fractal interpolating functions for geophysical encoding. Fractals 20 (3–4): 261–270.

    Article  Google Scholar 

  • Huang, H.H., C.E. Puente, A. Cortis, and J.L. Fernández Martínez. 2013. An effective inversion strategy for fractal–multifractal encoding of a storm in Boston. Journal of Hydrology 496: 205–216.

    Article  Google Scholar 

  • Jayawardena, A.W., and F. Lai. 1994. Analysis and prediction of chaos in rainfall and stream flow time series. Journal of Hydrology 153: 23–52.

    Article  Google Scholar 

  • Jin, Y.H., A. Kawamura, K. Jinno, and R. Berndtsson. 2005. Nonlinear multivariate analysis of SOI and local precipitation and temperature. Nonlinear Processes Geophys 12: 67–74.

    Article  Google Scholar 

  • Jothiprakash, V., and T.A. Fathima. 2013. Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India. Stochastic Environmental Research and Risk Assessment 27 (6): 1371–1381.

    Article  Google Scholar 

  • Kim, H.S., K.H. Lee, M.S. Kyoung, B. Sivakumar, and E.T. Lee. 2009. Measuring nonlinear dependence in hydrologic time series. Stochastic Environmental Research and Risk Assessment 23: 907–916.

    Article  Google Scholar 

  • Koutsoyiannis, D., and D. Pachakis. 1996. Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. Journal of Geophysical Research: Atmospheres 101 (D21): 26441–26451.

    Article  Google Scholar 

  • Lanza, L.G., and E. Vuerich. 2009. The WMO field intercomparison of rain intensity gauges. Atmospheric Research 94 (4): 534–543.

    Article  Google Scholar 

  • Lovejoy, S., and D. Schertzer. 2013. The weather and climate: Emergent laws and multifractal cascades. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Luk, K.C., J.E. Ball, and A. Sharma. 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227 (1): 56–65.

    Article  Google Scholar 

  • Mandelbrot, B.B. 1982. The fractal geometry of nature. Henry Holt and Company.

    Google Scholar 

  • Maskey, M.L., C.E. Puente, B. Sivakumar, and A. Cortis. 2015. Encoding daily rainfall records via adaptations of the fractal multifractal method. Stochastic Environmental Research and Risk Assessment 30: 1917. doi:10.1007/s00477-015-1201-7.

    Article  Google Scholar 

  • Maskey, M.L., C.E. Puente, and B. Sivakumar. 2016a. A comparison of fractal-multifractal techniques for encoding streamflow records. Journal of Hydrology 542: 564–580.

    Article  Google Scholar 

  • Maskey, M.L., C.E. Puente, B. Sivakumar, and A. Cortis. 2016b. Deterministic Simulation of Highly Intermittent Hydrologic Time Series. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-016-1343-2.

  • Men, B., Z. Xiejing, and C. Liang. 2004. Chaotic analysis on monthly precipitation on Hills Region in Middle Sichuan of China. Nature and Science 2 (2): 45–51.

    Google Scholar 

  • Nasseri, M., K. Asghari, and M.J. Abedini. 2008. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications 35 (3): 1415–1421.

    Article  Google Scholar 

  • Obregón, N., C.E. Puente, and B. Sivakumar. 2002a. Modeling high resolution rain rates via a deterministic fractal–multifractal approach. Fractals 10 (3): 387–394.

    Article  Google Scholar 

  • ———. 2002b. A deterministic geometric representation of temporal rainfall. Sensitivity analysis for a storm in Boston. Journal of Hydrology 269 (3–4): 224–235.

    Article  Google Scholar 

  • Peters, O., C. Hertlein, and K. Christensen. 2001. A complexity view of rainfall. Physical Review Letters 88 (1): 018701.

    Article  Google Scholar 

  • Puente, C.E. 1996. A new approach to hydrologic modelling: derived distribution revisited. Journal of Hydrology 187: 65–80.

    Article  Google Scholar 

  • ———. 2004. A universe of projections: May Plato be right? Chaos. Solitons and Fractals 19 (2): 241–253.

    Article  Google Scholar 

  • Puente, C.E., and N. Obregón. 1996. A deterministic representation of temporal rainfall: Result for a storm in Boston. Water Resources Research 32 (9): 2825–2839.

    Article  Google Scholar 

  • Puente, C.E., and B. Sivakumar. 2007. Modeling hydrologic complexity: A case for geometric determinism. Hydrology and Earth System Sciences 11: 721–724.

    Article  Google Scholar 

  • Puente, C.E., O. Robayo, M.C. Díaz, and B. Sivakumar. 2001a. A fractal–multifractal approach to groundwater contamination. 1. Modeling conservative tracers at the Borden site. Stochastic Environmental Research and Risk Assessment 15 (5): 357–371.

    Article  Google Scholar 

  • Puente, C.E., O. Robayo, and B. Sivakumar. 2001b. A fractal–multifractal approach to groundwater contamination. 2. Predicting conservative tracers at the Borden site. Stochastic Environmental Research and Risk Assessment 5 (5): 372–383.

    Article  Google Scholar 

  • Puente, C.E., M.L. Maskey, and B. Sivakumar. 2017. Combining fractals and multifractals to model geoscience records. In Fractals: Concepts and applications in geosciences, ed. B. Ghanbarian and A. Hunt. Boca Raton: FL: CRC Press, in press

    Google Scholar 

  • Ramirez, M.C.V., H.F. de Campos Velho, and N.J. Ferreira. 2005. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology 301 (1): 146–162.

    Article  Google Scholar 

  • Rodríguez-Iturbe, I. 1986. Scale of fluctuation of rainfall models. Water Resources Research 22 (9): 15S–37S.

    Article  Google Scholar 

  • ———. 1991. Exploring complexity in the structure of rainfall. Advances in Water Resources 14 (4): 162–167.

    Article  Google Scholar 

  • Rodríguez-Iturbe, I., F.B. De Power, M.B. Sharifi, and K.P. Georgakakos. 1989. Chaos in rainfall. Water Resources Research 25 (7): 1667–1675.

    Article  Google Scholar 

  • Sharifi, M.B., K.P. Georgakakos, and I. Rodríguez-Iturbe. 1990. Evidence of deterministic chaos in the pulse of storm rainfall. Journal of the Atmospheric Sciences 47 (7): 888–893.

    Article  Google Scholar 

  • Sivakumar, B. 2000. Fractal analysis of rainfall observed in two different climatic regions. Hydrological Sciences Journal 45 (5): 727–738.

    Article  Google Scholar 

  • ———. 2004. Chaos theory in geophysics: past, present and future. Chaos, Solitons and Fractals 19 (2): 441–462.

    Article  Google Scholar 

  • ———. 2009. Nonlinear dynamics and chaos in hydrologic systems: Latest developments and a look forward. Stochastic Environmental Research and Risk Assessment 23: 1027–1036.

    Article  Google Scholar 

  • Sivakumar, B., and R. Berndtsson. 2010. Advances in data-based approaches for hydrologic modeling and forecasting. Singapore: World Scientific.

    Book  Google Scholar 

  • Sivakumar, B., and V.P. Singh. 2012. Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrology and Earth System Sciences 16: 4119–4131.

    Article  Google Scholar 

  • Sivakumar, B., S.Y. Liong, C.Y. Liaw, and K.K. Phoon. 1999. Singapore rainfall behavior: Chaotic? Journal of Hydrologic Engineering 4 (1): 38–48.

    Article  Google Scholar 

  • Sivakumar, B., R. Berndtsson, and M. Persson. 2001a. Monthly runoff prediction using phase space reconstruction. Hydrological Sciences Journal 46 (3): 377–387.

    Article  Google Scholar 

  • Sivakumar, B., S. Sorooshian, H.V. Gupta, and X. Gao. 2001b. A chaotic approach to rainfall disaggregation. Water Resources Research 37 (1): 61–72.

    Article  Google Scholar 

  • Sivakumar, B., F.M. Woldemeskel, and C.E. Puente. 2014. Nonlinear analysis of rainfall variability in Australia. Stochastic Environmental Research and Risk Assessment 28 (1): 17–27.

    Article  Google Scholar 

  • Tessier, Y., S. Lovejoy, and D. Schertzer. 1993. Universal multifractals: Theory and observations for rain and clouds. Journal of Applied Meteorology 32: 223–250.

    Article  Google Scholar 

Download references

Acknowledgements

This article is dedicated to Panayiotis Tsonis, whom the first author hugged in Rhodes, as if he was his brother.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Puente .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Puente, C.E., Maskey, M.L., Sivakumar, B. (2018). Studying the Complexity of Rainfall Within California Via a Fractal Geometric Method. In: Tsonis, A. (eds) Advances in Nonlinear Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58895-7_24

Download citation

Publish with us

Policies and ethics