Skip to main content

Techniques for Remediation of Paper and Pulp Mill Effluents: Processes and Constraints

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

Economic development of a nation is linked to industrialization, but should not take place at the expense of environmental degradation. The demand for paper and cardboard in packaging industries is continuously on increase. However, paper industry is extremely water intensive and also an obnoxious polluter of the environment, thereby being categorized under the red category of pollution control boards. Pulp and paper mill effluents consist of not only lignin and other naturally occurring polymers but also many xenobiotic compounds (chlorinated lignins, resin acids and phenols, dioxins, furans, chlorophenols, adsorbable organic halogens (AOX), extractable organic halogens (EOXs), polychlorinated biphenyls, polychlorinated dibenzodioxins, plasticizers, etc.), which can cause severe toxicity to aquatic life by bioaccumulation and may lead to biomagnification in food chains. Salt-rich black liquor can also deteriorate the soil structure, increase soil salinity, and cause nutrient imbalance in crops when used for irrigation without any prior treatment. Hence, appropriate treatment of this liquor prior to discharge into the environment is crucial. Although conventional treatments are quite effective in decolorization of paper mill effluents, all have severe setbacks such as high cost of treatment or unreliability in operation. Thus, this chapter deals with the recent developments in the technologies for treatment of wastewater generated from paper and pulp industries. Some of these include use of environmental biological agents with their enhanced enzymatic systems and new materials for cell immobilization that have received considerable attention in the recent years. The processes related to these technologies, their economic benefits, and constraints if any will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  Google Scholar 

  • Allocati N, Federici L, Masulli M, DiIlio C (2009) Glutathione transferases in bacteria. The FEBS J 276:58–75

    Article  Google Scholar 

  • Apiwattanapiwat W, Siriacha P, Vaithanomsat P (2006) Screening of fungi for decolorization of wastewater from pulp and paper industry. Kasetsart J (Nat Sci) 40:215–221

    Google Scholar 

  • Arica MY, Altintas B, Bayramoglu G (2009) Immobilization of laccase onto spacer–arm attached non–porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresour Technol 100:665–669

    Article  Google Scholar 

  • Blair JE, Davis LT (1980) Process for decolorizing pulp and paper mill wastewater. US Patent 4,199,444

    Google Scholar 

  • Cabaleiro DR, Rodríguez–Couto S, Sanromán A, Longo MA (2002) Comparison between the protease production ability of ligninolytic fungi cultivated in solid state media. Process Biochem 37:1017–1023

    Article  Google Scholar 

  • Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34:991–999

    Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  Google Scholar 

  • Chandra R, Abhishek A, Sankhwar M (2011) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 102:6429–6436

    Article  Google Scholar 

  • Chauhan N, Thakur IS (2002) Treatment of pulp and paper mill effluent by Pseudomonas Fluorescens in fixed film bioreactor. Pollut Res 21:429–434

    Google Scholar 

  • Chedchant J, Petchoy O, Vaithanomsat P, Apiwatanapiwat W, Kreetachat T, Chantranurak S (2009) Decolorization of lignin containing effluent by white–rot fungus Datronia sp. KAPI0039. In: Proceedings of the 47th Kasetsart University annual conference, Bangkok

    Google Scholar 

  • Chen BY, Chen SY, Chang JS (2005) Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochem 40:3434–3440

    Article  Google Scholar 

  • Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012) Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 125:900–906

    Article  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  Google Scholar 

  • Couto SR, Sanromán MA, Hofer D, Gübitz GM (2004) Stainless steel sponge: a novel carrier for the immobilisation of the white–rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresour Technol 95:67–72

    Article  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    Google Scholar 

  • de Oliveira PL, Duarte MCT, Ponezi AN, Durrant LR (2009) Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent. Braz J Microbiol 40:354–357

    Article  Google Scholar 

  • Engade KB, Gupta SG (2010) Decolorization of textile effluent by immobilized Aspergillus terreus. J Pet Environ Biotechnol 1:101–103

    Google Scholar 

  • Erickson LE (1992) Bioreactor. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, New York, pp 363–368

    Google Scholar 

  • Godjevargova T, Ivanova D, Alexieva Z, Dimova N (2003) Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57. Process Biochem 38:915–920

    Article  Google Scholar 

  • Gupta V, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. J Chem Technol Biotechnol 76:547–552

    Article  Google Scholar 

  • Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbuchel A (eds) Lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Jain RK, Mathur RM, Thakur VV, Kulkarni AG (2007) Enzyme prebleaching of pulp: perspective in Indian paper industries. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology future prospects. I.K International Publishing House Pvt. Ltd., New Delhi, pp 261–272

    Google Scholar 

  • Jiang D-S, Long S-Y, Huang J, Xiao H-Y, Zhou J-Y (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J 25:15–23

    Article  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716

    Article  Google Scholar 

  • Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342

    Article  Google Scholar 

  • Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Bibyo River, Chile. Sci Total Environ 359:194–208

    Article  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    Google Scholar 

  • Lafond RA, Ferguson JF (1991) Anaerobic and aerobic biological treatment processes for removal of chlorinated organics from kraft bleaching wastes. In: Tappi proceeding of the environmental conference. Tappi Press, Atlanta, pp 797–812

    Google Scholar 

  • Lindholm-Lehto P, Knuutinen J, Ahkola H, Herve S (2015) Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res 22:6473–6499

    Article  Google Scholar 

  • Malaviya P, Rathore VS (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98:3647–3651

    Article  Google Scholar 

  • Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M (2003) Roles of the enantioselective glutathione S-transferases in cleavage of β-Aryl ether. J Bacteriol 185:1768–1775

    Article  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  Google Scholar 

  • Mishra T, Ramola S, Shankhwar AK, Rabha AK, Srivastava RK (2016) Pulp and paper mill effluent treatment by hybrid anaerobic upflow fixed-bed bioreactor combined with slow sand filter. Desalin Water Treat 57:10528–10536

    Article  Google Scholar 

  • Oliveira LA, Porto ALF, Tambourgi EB (2006) Production of xylanase and protease by Penicillium janthinellum CRC 87M–115 from different agricultural wastes. Bioresour Technol 97:862–867

    Article  Google Scholar 

  • Ortega-Clemente A, Caffarel-Méndez S, Ponce-Noyola MT, Barrera-Cortes J, Poggi-Varaldo HM (2009) Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants. Bioresour Technol 100:1885–1894

    Article  Google Scholar 

  • Paliwal R, Rawat AP, Rawat M, Rai JPN (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167:1865–1889

    Article  Google Scholar 

  • Pant D, Adholeya A (2007) Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18:647–659

    Article  Google Scholar 

  • Pathak C, Chopra AK, Srivastava S (2013) Accumulation of heavy metals in Spinacia Oleracea irrigated with paper mill effluent and sewage. Environ Monit Assess 185:7343–7352

    Article  Google Scholar 

  • Pich A, Bhattacharya S, Adler H-JP, Wage T, Taubenberger A, Li Z, Pee K-H, Böhmer U, Bley T (2006) Composite magnetic particles as carriers for laccase from Trametes versicolor. Macromol Biosci 6:301–310

    Article  Google Scholar 

  • Raj A, Reddy MMK, Chandra R (2007) Decolorisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp. J Chem Technol Biotechnol 82:399–406

    Article  Google Scholar 

  • Raj A, Kumar S, Haq I, Singh SK (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362

    Article  Google Scholar 

  • Rajwar D, Paliwal R, Rai JPN (2017) Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process. Environ Monit Assess 189:482–497

    Article  Google Scholar 

  • Rao MN, Dutta AK (2016) Pulp and paper mill waste. In: Waste water treatment, 3rd edn. Oxford and IBH Publishing Co. PVT. Ltd, New Delhi, pp 203–214. ISBN:978-81-204-1712-0

    Google Scholar 

  • Roy JJ, Abraham TE, Abhijith KS, Kumar PVS, Thakur MS (2005) Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Biosens Bioelectron 21:206–211

    Article  Google Scholar 

  • Sharma S, Agarwal L, Kumar R (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour Technol 99:2544–2551

    Article  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013) Characterization and genomic analysis of kraft lignin biodegradation by the beta–proteobacterium Cupriavidus basilensis B–8. Biotechnol Biofuels 6:1–14

    Article  Google Scholar 

  • Shim SS, Kawamoto K (2002) Enzyme production activity of Phanerochaete chrysosporium and degradation of pentachlorophenol in a bioreactor. Water Res 36:4445–4454

    Article  Google Scholar 

  • Singh P, Thakur IS (2006) Colour removal of anaerobically treated pulp and paper mill effluent by microorganisms in two steps bioreactor. Bioresour Technol 97:218–223

    Article  Google Scholar 

  • Skyba O, Douglas CJ, Mansfielda SD (2013) Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 79:2560–2571

    Article  Google Scholar 

  • Thakur IS (2004) Screening and identification of microbial strains for removal of colour and adsorbable organic halogens in pulp and paper mill effluent. Process Biochem 39:1693–1699

    Article  Google Scholar 

  • Tiku DK, Kumar A, Chaturvedi R, Makhijani SD, Manoharan A, Kumar R (2010) Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int Biodeter Biodegr 64:173–183

    Article  Google Scholar 

  • Tyagi S, Kumar V, Singh J, Teotia P, Bisht S, Sharma S (2014) Bioremediation of pulp and paper mill effluent by dominant aboriginal microbes and their consortium. Int J Environ Res 8:561–568

    Google Scholar 

  • Valenzuela J, Bumann U, Cespedes R, Padilla L, Gonzalez B (1997) Degradation of chlorophenols by Alcaligenes eutrophus JMP 134 (pJP4) in bleached kraft mill effluent. Appl Environ Microbiol 63:227–232

    Google Scholar 

  • Vikineswary S, Noorlidah A, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro–residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    Article  Google Scholar 

  • Wu J, Xiao YZ, Yu HQ (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96:1357–1363

    Article  Google Scholar 

  • Yadav RD, Chaudhry S, Dhiman SS (2010) Biopulping and its potential to reduce effluent loads from bleaching of hardwood kraft pulp. Bioresources 5:159–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chaudhry, S., Paliwal, R. (2018). Techniques for Remediation of Paper and Pulp Mill Effluents: Processes and Constraints. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics