Skip to main content

Strategic Supply Chain Planning in Biomass-Based Industries: A Literature Review of Quantitative Models

  • Chapter
  • First Online:
Knowledge-Driven Developments in the Bioeconomy

Part of the book series: Economic Complexity and Evolution ((ECAE))

Abstract

Fossil resources are limited and will run short. Moreover, the extensive usage of fossil resources is discussed as a key driver for climate change which means that a changeover in basic economic and ecological thinking is necessary. Especially for the energy production, there has to be a movement away from the usage of fossil resources and towards renewable resources like wind, water, sun or biomass. In this chapter we present a structured review of recent literature on the long-term, strategic planning of biomass-based supply chains. Firstly, we structure the overall research field “bioeconomy” by means of the various utilization pathways of biomass and bring together the demand-oriented view of supply chain management models and the supply-oriented view of bioeconomy. Secondly, we provide a literature review of Operations Research models and methods for strategic supply chain planning in biomass-based industries. Thirdly, we analyze trends and draw conclusions about research gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A more detailed definition will follow in Sect. 2.

References

  • Ahn, Y.-C., Lee, I.-B., Lee, K.-H., & Han, J.-H. (2015). Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model. Applied Energy, 154, 528–542.

    Article  Google Scholar 

  • Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20.

    Article  Google Scholar 

  • Akgul, O., Mac Dowell, N., Papageorgiou, L. G., & Shah, N. (2014). A mixed integer nonlinear programming (MINLP) supply chain optimisation framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK. International Journal of Greenhouse Gas Control, 28, 189–202.

    Article  Google Scholar 

  • Akgul, O., Shah, N., & Papageorgiou, L. G. (2012a). Economic optimisation of a UK advanced biofuel supply chain. Biomass and Bioenergy, 41, 57–72.

    Article  Google Scholar 

  • Akgul, O., Shah, N., & Papageorgiou, L. G. (2012b). An optimisation framework for a hybrid first/second generation bioethanol supply chain. Computers and Chemical Engineering, 42, 101–114.

    Article  Google Scholar 

  • Akgul, O., Zamboni, A., Bezzo, F., Shah, N., & Papageorgiou, L. G. (2011). Optimization-based approaches for bioethanol supply chains. Industrial and Engineering Chemistry Research, 50(9), 4927–4938.

    Article  Google Scholar 

  • Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904.

    Article  Google Scholar 

  • Aksoy, B., Cullinan, H., Webster, D., Gue, K., Sukumaran, S., Eden, M., & Sammons, N. (2011). Woody biomass and mill waste utilization opportunities in Alabama: Transportation cost minimization, optimum facility location, economic feasibility, and impact. Environmental Progress and Sustainable Energy, 30(4), 720–732.

    Article  Google Scholar 

  • Amorim, P., Meyr, H., Almeder, C., & Almada-Lobo, B. (2013). Managing perishability in production-distribution planning: A discussion and review. Flexible Services and Manufacturing Journal, 25, 389–413.

    Article  Google Scholar 

  • An, H., Wilhelm, W. E., & Searcy, S. W. (2011a). A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas. Bioresource Technology, 102(17), 7860–7870.

    Article  Google Scholar 

  • An, H., Wilhelm, W. E., & Searcy, S. W. (2011b). Biofuel and petroleum-based fuel supply chain research: A literature review. Biomass and Bioenergy, 35(9), 3763–3774.

    Google Scholar 

  • Andersen, F., Iturmendi, F., Espinosa, S., & Diaz, M. S. (2012). Optimal design and planning of biodiesel supply chain with land competition. Computers and Chemical Engineering, 47, 170–182.

    Article  Google Scholar 

  • Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368.

    Article  Google Scholar 

  • Ayoub, N., Martins, R., Wang, K., Seki, H., & Naka, Y. (2007). Two levels decision system for efficient planning and implementation of bioenergy production. Energy Conversion and Management, 48(3), 709–723.

    Article  Google Scholar 

  • Ba, B. H., Prins, C., & Prodhon, C. (2015). Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renewable Energy, doi: 10.1016/j.renene.2015.07.045.

    Google Scholar 

  • Bai, Y., Hwang, T., Kang, S., & Ouyang, Y. (2011). Biofuel refinery location and supply chain planning under traffic congestion. Transportation Research Part B: Methodological, 45(1), 162–175.

    Article  Google Scholar 

  • Bernardi, A., Giarola, S., & Bezzo, F. (2013). Spatially explicit multiobjective optimization for the strategic design of first and second generation biorefineries including carbon and water footprints. Industrial and Engineering Chemistry Research, 52(22), 7170–7180.

    Article  Google Scholar 

  • Bioökonomierat (Ed.) (2015). Nachhaltige Bereitstellung von biobasierten agrarischen Rohstoffen. Office of the Bioeconomy Council.

    Google Scholar 

  • BMBF, BMEL. (2014). Bioökonomie in Deutschland: Chancen für eine biobasierte nachhaltige Zukunft.

    Google Scholar 

  • Bowling, I. M., Ponce-Ortega, J. M., & El-Halwagi, M. M. (2011). Facility location and supply chain optimization for a biorefinery. Industrial and Engineering Chemistry Research, 50(10), 6276–6286.

    Article  Google Scholar 

  • Cambero, C., & Sowlati, T. (2014). Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature. Renewable and Sustainable Energy Reviews, 36, 62–73.

    Article  Google Scholar 

  • Cambero, C., Sowlati, T., Marinescu, M., & Röser, D. (2015). Strategic optimization of forest residues to bioenergy and biofuel supply chain. International Journal of Energy Research, 39(4), 439–452.

    Article  Google Scholar 

  • Caputo, A. C., Palumbo, M., Pelagagge, P. M., & Scacchia, F. (2005). Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass and Bioenergy, 28(1), 35–51.

    Article  Google Scholar 

  • Carlsson, D., D’Amours, S., Martel, A., & Rönnqvist, M. (2009). Supply chain planning models in the pulp and paper industry. INFOR: Information Systems and Operational Research, 47(3), 167–183.

    Google Scholar 

  • Chen, C.-W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150–164.

    Article  Google Scholar 

  • Christopher, M. (2005). Logistics and supply chain management, creating value-adding networks (3rd ed.). Harlow: Financial Times Prentice Hall.

    Google Scholar 

  • Cobuloglu, H. I., Büyüktahtakın, & Esra, İ. (2014). A mixed-integer optimization model for the economic and environmental analysis of biomass production. Biomass and Bioenergy, 67, 8–23.

    Google Scholar 

  • Coca-Cola. (2016). PlantBottle frequently asked questions: The Coca-Cola company. http://www.coca-colacompany.com/stories/plantbottle-frequently-asked-questions/. Accessed 13 Jun 2017.

  • Correll, D., Suzuki, Y., & Martens, B. J. (2014). Logistical supply chain design for bioeconomy applications. Biomass and Bioenergy, 66, 60–69.

    Article  Google Scholar 

  • Corsano, G., Vecchietti, A. R., & Montagna, J. M. (2011). Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Computers and Chemical Engineering, 35(8), 1384–1398.

    Article  Google Scholar 

  • Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65–80.

    Article  Google Scholar 

  • Dal-Mas, M., Giarola, S., Zamboni, A., & Bezzo, F. (2011). Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35(5), 2059–2071.

    Article  Google Scholar 

  • De Mol, R. M., Jogems, M. A. H., Beek, P. V., & Gigler, J. K. (1997). Simulation and optimization of the logistics of biomass fuel collection. Netherlands Journal of Agricultural Science, 45, 219–228.

    Google Scholar 

  • Diepenbrock, W. (2014). Nachwachsende rohstoffe (1st ed., Vol. 4189). Stuttgart: Eugen Ulmer KG.

    Google Scholar 

  • Dunnett, A. J., Adjiman, C. S., & Shah, N. (2008). A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: An assessment of decentralised processing potential. Biotechnology for Biofuels, 1(1), 13–30.

    Article  Google Scholar 

  • Ekşioğlu, S., Li, S., Zhang, S., Sokhansanj, S., & Petrolia, D. (2010). Analyzing impact of intermodal facilities on design and management of biofuel supply chain. Transportation Research Record: Journal of the Transportation Research Board, 2191, 144–151.

    Article  Google Scholar 

  • Ekşioğlu, S. D., Acharya, A., Leightley, L. E., & Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers and Industrial Engineering, 57(4), 1342–1352.

    Article  Google Scholar 

  • Feng, Y., D’Amours, S., LeBel, L., & Nourelfath, M. (2010). Integrated bio-refinery and forest products supply chain network design using mathematical programming approach. Montreal: CIRRELT.

    Google Scholar 

  • Fleischmann, B., & Meyr, H. (2003). Planning hierarchy, modeling and advanced planning systems. In A. De Kok & S. C. Graves (Eds.), Supply Chain management: Design, coordination, operation. Handbooks in Operations Research and Management Science (Chap. 9, Vol. 11, pp. 457–523). Amsterdam: Elsevier.

    Google Scholar 

  • Fleischmann, B., Meyr, H., & Wagner, M. (2015). Advanced planning. In H. Stadtler, C. Kilger, & H. Meyr (Eds.), Supply Chain management and advanced planning (Chap. 4, 5th ed., pp. 71–95). Berlin: Springer.

    Google Scholar 

  • Frombo, F., Minciardi, R., Robba, M., Rosso, F., & Sacile, R. (2009a). Planning woody biomass logistics for energy production: A strategic decision model. Biomass and Bioenergy, 33(3), 372–383.

    Article  Google Scholar 

  • Frombo, F., Minciardi, R., Robba, M., & Sacile, R. (2009b). A decision support system for planning biomass-based energy production. Energy, 34(3), 362–369.

    Article  Google Scholar 

  • Giarola, S., Bezzo, F., & Shah, N. (2013). A risk management approach to the economic and environmental strategic design of ethanol supply chains. Biomass and Bioenergy, 58, 31–51.

    Article  Google Scholar 

  • Giarola, S., Zamboni, A., & Bezzo, F. (2011). Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries. Computers and Chemical Engineering, 35(9), 1782–1797.

    Article  Google Scholar 

  • Giarola, S., Zamboni, A., & Bezzo, F. (2012). Environmentally conscious capacity planning and technology selection for bioethanol supply chains. Renewable Energy, 43, 61–72.

    Article  Google Scholar 

  • Gunn, E. (2009). Some perspectives on strategic forest management models and the forest products supply chain. INFOR: Information Systems and Operational Research, 47(3), 261–272.

    Google Scholar 

  • Gunnarsson, H., Rönnqvist, M., & Carlsson, D. (2005). A combined terminal location and ship routing problem. Journal of the Operational Research Society, 57(8), 928–938.

    Article  Google Scholar 

  • Huang, Y., Chen, C. W., & Fan, Y. (2010). Multistage optimization of the supply chains of biofuels. Transportation Research Part E: Logistics and Transportation Review, 46(6), 820–830.

    Article  Google Scholar 

  • Ivanov, B., & Stoyanov, S. (2016). A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system. Energy, 99, 221–236.

    Article  Google Scholar 

  • Judd, J. D., Sarin, S. C., & Cundiff, J. S. (2012). Design, modeling, and analysis of a feedstock logistics system. Bioresource Technology, 103(1), 209–218.

    Article  Google Scholar 

  • Kaltschmitt, M. (2009). Biomasse als nachwachsender Energieträger. In M. Kaltschmitt, H. Hartmann, & H. Hofbauer (Eds.), Energie aus biomasse: Grundlagen, techniken und verfahren (Chap. 1.1, 2nd ed., pp. 1–7). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kanzian, C. (2009). Regional energy wood logistics – Optimizing local fuel supply. Silva Fennica, 43(1), 113–128.

    Article  Google Scholar 

  • Kelley, J., Kuby, M., & Sierra, R. (2013). Transportation network optimization for the movement of indigenous goods in Amazonian Ecuador. Journal of Transport Geography, 28, 89–100.

    Article  Google Scholar 

  • Kim, J., Realff, M. J., & Lee, J. H. (2011a). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Computers and Chemical Engineering, 35(9), 1738–1751.

    Article  Google Scholar 

  • Kim, J., Realff, M. J., Lee, J. H., Whittaker, C., & Furtner, L. (2011b). Design of biomass processing network for biofuel production using an MILP model. Biomass and Bioenergy, 35(2), 853–871.

    Article  Google Scholar 

  • Kirschstein, T. (2015). Integrated planning of chemical supply chains. Wiesbaden: Springer Fachmedien.

    Book  Google Scholar 

  • Lam, H. L., Ng, W. P., Ng, R. T., Ng, E. H., Aziz, M.K.A., & Ng, D. K. (2013). Green strategy for sustainable waste-to-energy supply chain. Energy, 57, 4–16.

    Article  Google Scholar 

  • Leão, R., Hamacher, S., & Oliveira, F. (2011). Optimization of biodiesel supply chains based on small farmers: A case study in Brazil. Bioresource Technology, 102(19), 8958–8963.

    Article  Google Scholar 

  • Leduc, S., Schwab, D., Dotzauer, E., Schmid, E., & Obersteiner, M. (2008). Optimal location of wood gasification plants for methanol production with heat recovery. International Journal of Energy Research, 32(12), 1080–1091.

    Article  Google Scholar 

  • Leduc, S., Lundgren, J., Franklin, O., & Dotzauer, E. (2010). Location of a biomass based methanol production plant: A dynamic problem in northern Sweden. Applied Energy, 87(1), 68–75.

    Article  Google Scholar 

  • Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass-biofuel supply chain optimization. Bioresource Technology, 156, 256–266.

    Article  Google Scholar 

  • Marufuzzaman, M., Eksioglu, S. D., & Huang, Y. (2014). Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment. Computers and Operations Research, 49, 1–17.

    Article  Google Scholar 

  • Marvin, W., Schmidt, L. D., Benjaafar, S., Tiffany, D. G., & Daoutidis, P. (2012). Economic optimization of a lignocellulosic biomass-to-ethanol supply chain. Chemical Engineering Science, 67(1), 68–79.

    Article  Google Scholar 

  • Marvin, W., Schmidt, L. D., & Daoutidis, P. (2013). Biorefinery location and technology selection through supply chain optimization. Industrial and Engineering Chemistry Research, 52(9), 3192–3208.

    Article  Google Scholar 

  • Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multiobjective model for more sustainable fuel supply chains. A case study of the sugar cane industry in Argentina. Industrial and Engineering Chemistry Research, 50(9), 4939–4958.

    Article  Google Scholar 

  • Meyer, A. D., Cattrysse, D., & van Orshoven, J. (2015). A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS). European Journal of Operational Research, 245(1), 247–264.

    Article  Google Scholar 

  • Meyer, A. D., Cattrysse, D., & van Orshoven, J. (2016). Considering biomass growth and regeneration in the optimisation of biomass supply chains. Renewable Energy, 87, 990–1002.

    Article  Google Scholar 

  • Mohseni, S., & Pishvaee, M. S. (2016). A robust programming approach towards design and optimization of microalgae-based biofuel supply chain. Computers and Industrial Engineering, 100, 58–71.

    Article  Google Scholar 

  • Mohseni, S., Pishvaee, M. S., & Sahebi, H. (2016). Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran. Energy, 111, 736–755.

    Article  Google Scholar 

  • Osmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157–172.

    Article  Google Scholar 

  • Paulo, H., Azcue, X., Barbosa-Póvoa, A. P., & Relvas, S. (2015). Supply chain optimization of residual forestry biomass for bioenergy production: The case study of Portugal. Biomass and Bioenergy, 83, 245–256.

    Article  Google Scholar 

  • Philpott, A., & Everett, G. (2001). Supply chain optimisation in the paper industry. Annals of Operations Research, 108(1/4), 225–237.

    Article  Google Scholar 

  • Rauch, P., & Gronalt, M. (2011). The effects of rising energy costs and transportation mode mix on forest fuel procurement costs. Biomass and Bioenergy, 35(1), 690–699.

    Article  Google Scholar 

  • Reche López, P., Jurado, F., Ruiz Reyes, N., García Galán, S., & Gómez, M. (2008). Particle swarm optimization for biomass-fuelled systems with technical constraints. Engineering Applications of Artificial Intelligence, 21(8), 1389–1396.

    Article  Google Scholar 

  • Rentizelas, A. A., & Tatsiopoulos, I. P. (2010). Locating a bioenergy facility using a hybrid optimization method. International Journal of Production Economics, 123(1), 196–209.

    Article  Google Scholar 

  • Rentizelas, A. A., Tatsiopoulos, I. P., & Tolis, A. (2009). An optimization model for multi-biomass tri-generation energy supply. Biomass and Bioenergy, 33(2), 223–233.

    Article  Google Scholar 

  • Roitsch, M., & Meyr, H. (2015). Oil industry. In H. Stadtler, C. Kilger, & H. Meyr (Eds.), Supply chain management and advanced planning (Chap. 24, 5th ed., pp. 443–458). Berlin: Springer.

    Google Scholar 

  • Roni, M., Eksioglu, S. D., Searcy, E., & Jha, K. (2014). A supply chain network design model for biomass co-firing in coal-fired power plants. Transportation Research Part E: Logistics and Transportation Review, 61, 115–134.

    Article  Google Scholar 

  • Santibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2011). Optimal planning of a biomass conversion system considering economic and environmental aspects. Industrial and Engineering Chemistry Research, 50(14), 8558–8570.

    Article  Google Scholar 

  • Schwaderer, F. (2012). Integrierte Standort-, Kapazitäts- und Technologieplanung von Wertschöpfungsnetzwerken zur stofflichen und energetischen Biomassenutzung. Dissertation, Karlsruher Institut für Technologie, Karlsruhe.

    Google Scholar 

  • Soysal, M., Bloemhof-Ruwaard, J. M., Meuwissen, M., & van der Vorst, J. (2012). A review on quantitative models for sustainable food logistics management. International Journal of Foord System Dynamics, 3(2), 136–155.

    Google Scholar 

  • Stadtler, H. (2015). Supply chain management - An overview. In H. Stadtler, C. Kilger, H. Meyr (Eds.), Supply chain management and advanced planning (Chap. 1, 5th ed., pp. 3–28). Berlin: Springer.

    Google Scholar 

  • Thrän, D., Scholwin, F., & Körner, I. (2009). Sonstige biomasse. In M. Kaltschmitt, H. Hartmann, & H. Hofbauer (Eds.), Energie aus biomasse: Grundlagen, techniken und verfahren (Chap. 4.3, 2nd ed., pp. 157–171). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Tittmann, P. W., Parker, N. C., Hart, Q. J., & Jenkins, B. M. (2010). A spatially explicit techno-economic model of bioenergy and biofuels production in California. Journal of Transport Geography, 18(6), 715–728.

    Article  Google Scholar 

  • Troncoso, J. J., & Garrido, R. A. (2005). Forestry production and logistics planning: An analysis using mixed-integer programming. Forest Policy and Economics, 7(4), 625–633.

    Article  Google Scholar 

  • Tsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47–64.

    Article  Google Scholar 

  • Türk, O. (2014). Stoffliche Nutzung nachwachsender Rohstoffe: Grundlagen - Werkstoffe - Anwendungen. Wiesbaden: Springer Vieweg

    Book  Google Scholar 

  • Walther, G., Schatka, A., & Spengler, T. S. (2012). Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany. European Journal of Operational Research, 218(1), 280–292.

    Article  Google Scholar 

  • Wang, S., Hastings, A., & Smith, P. (2012). An optimization model for energy crop supply. GCB Bioenergy, 4(1), 88–95.

    Article  Google Scholar 

  • World Bank. (2015). World development indicators: Growth of output. http://wdi.worldbank.org/table/4.1. Accessed 13 Jun 2017.

  • You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58(4), 1157–1180.

    Article  Google Scholar 

  • You, F., & Wang, B. (2011). Life cycle optimization of biomass-to-liquid supply chains with distributed–centralized processing networks. Industrial and Engineering Chemistry Research, 50(17), 10102–10127.

    Article  Google Scholar 

  • Zamboni, A., Shah, N., & Bezzo, F. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy and Fuels, 23(10), 5121–5133.

    Article  Google Scholar 

  • Zhang, L., & Hu, G. (2013). Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass and Bioenergy, 58, 238–250.

    Article  Google Scholar 

  • Zhang, W., & Wilhelm, W. E. (2011). OR/MS decision support models for the specialty crops industry: A literature review. Annals of Operations Research, 190(1), 131–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Fichtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fichtner, S., Meyr, H. (2017). Strategic Supply Chain Planning in Biomass-Based Industries: A Literature Review of Quantitative Models. In: Dabbert, S., Lewandowski, I., Weiss, J., Pyka, A. (eds) Knowledge-Driven Developments in the Bioeconomy. Economic Complexity and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-58374-7_14

Download citation

Publish with us

Policies and ethics