Skip to main content

The Significance of Deiminated GFAP in Neurodegenerative Diseases with Special Emphasis on Alexander Disease

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

A primary impetus for interest in a role for deiminated proteins in neurodegenerative diseases has been suggested that deimination of myelin basic protein (MBP) is a primary step in the development of multiple sclerosis (MS) (reviewed in Chap. 19). In brief, it is proposed that an unknown precipitating event causes increased peptidylarginine deiminase (PAD) activity, leading to deimination of MBP. This in turn results in disruption of the myelin structure, increased susceptibility of MBP to proteolysis, and release of MBP peptides that precipitate the autoimmune response that results in clinical symptoms. It was surprising, therefore, that a survey of proteins deiminated in MS, as well as in other CNS disorders, suggested that glial fibrillary acidic protein (GFAP) is the more predominant target. This finding raises the possibility that deimination of GFAP could have a general role in neurodegenerative disorders. This chapter explores this premise, with special emphasis on Alexander disease (AxD) as a likely candidate for an effect, since this disease is caused by dominant mutations in the GFAP gene. We begin with a description of GFAP and AxD, and then review evidence that astrocytes are a major repository for PAD in the CNS, and finally that GFAP is a primary target of its activity in both normal conditions and in several neurodegenerative disorders. This is followed by a discussion of the possible physiological effects of GFAP deimination and how these might influence disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AlzD:

Alzheimer’s disease

AxD:

Alexander disease

EAE:

Experimental autoimmune encephalomyelitis

GFAP:

Glial fibrillary acidic protein

IF:

Intermediate filament

KO:

Gene knockout

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

mass spec:

Mass spectroscopy

MBP:

Myelin basic protein

MS:

Multiple sclerosis

MW:

Molecular weight

PAD:

Peptidylarginine deiminase

rh:

Recombinant human

References

  • Acharya, N. K., Nagele, E. P., Han, M., Coretti, N. J., DeMarshall, C., Kosciuk, M. C., Boulos, P. A., & Nagele, R. G. (2012). Neuronal PAD4 expression and protein citrullination: Possible role in production of autoantibodies associated with neurodegenerative disease. Journal of Autoimmunity, 38, 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Asaga, H., & Ishigami, A. (2000). Protein deimination in the rat brain: Generation of citrulline-containing proteins in cerebrum perfused with oxygen-deprived media. Biomedical Research, 21, 197–205.

    Article  CAS  Google Scholar 

  • Asaga, H., & Ishigami, A. (2001). Protein deimination in the rat brain after kainate administration: Citrulline-containing proteins as a novel marker of neurodegeneration. Neuroscience Letters, 299, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Asaga, H., & Senshu, T. (1993). Combined biochemical and immunocytochemical analyses of postmortem protein deimination in the rat spinal cord. Cell Biology International, 17, 525–532.

    Article  CAS  PubMed  Google Scholar 

  • Asaga, H., Akiyama, K., Ohsawa, T., & Ishigami, A. (2002). Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neuroscience Letters, 326, 129–132.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay, U., Sridhar, S., Kaushik, S., Kiffin, R., & Cuervo, A. M. (2010). Identification of regulators of chaperone-mediated autophagy. Molecular Cell, 39, 535–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, S. K., Crabb, J. S., Bonilha, V. L., Gu, X., Takahara, H., & Crabb, J. W. (2006). Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investigative Ophthalmology & Visual Science, 47, 2508–2514.

    Article  Google Scholar 

  • Bradford, C. M., Ramos, I., Cross, A. K., Haddock, G., McQuaid, S., Nicholas, A. P., & Woodroofe, M. N. (2014). Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. Journal of Neuroimmunology, 273, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, C., Nicholas, A. P., Woodroofe, N., & Cross, A. K. (2014). Deimination in multiple sclerosis and experimental autoimmune encephalomyelitis. In A. P. Nicholas & S. K. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 165–185). New York: Springer.

    Chapter  Google Scholar 

  • Brenner, M. (2014). Role of GFAP in CNS injuries. Neuroscience Letters, 565, 7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner, M., Goldman, J. E., Quinlan, R. A., & Messing, A. (2009). Alexander disease: A genetic disorder of astrocytes. In V. Parpura & P. Haydon (Eds.), Astrocytes in (Patho)physiology of the nervous system (pp. 591–648). New York: Springer.

    Chapter  Google Scholar 

  • Cheli, V. T., Santiago Gonzalez, D. A., Smith, J., Spreuer, V., Murphy, G. G., & Paez, P. M. (2016). L-type voltage-operated calcium channels contribute to astrocyte activation in vitro. Glia, 64, 1396–1415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, W. J., & Liem, R. K. (1994). The endless story of the glial fibrillary acidic protein. Journal of Cell Science, 107, 2299–2311.

    CAS  PubMed  Google Scholar 

  • Csordas, G., Thomas, A. P., & Hajnoczky, G. (1999). Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. The EMBO Journal, 18, 96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R., Brenner, M., & Quinlan, R. A. (2006). The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha b-crystallin and HSP27. American Journal of Human Genetics, 79, 197–213.

    Article  CAS  PubMed Central  Google Scholar 

  • Flint, D., Li, R., Webster, L. S., Naidu, S., Kolodny, E., Percy, A., van der Knaap, M., Powers, J. M., Mantovani, J. F., Ekstein, J., Goldman, J. E., Messing, A., & Brenner, M. (2012). Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Human Mutation, 33, 1141–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda, A., Deshpande, S. B., Shimano, Y., & Nishino, H. (1998). Astrocytes are more vulnerable than neurons to cellular Ca2+ overload induced by a mitochondrial toxin, 3-nitropropionic acid. Neuroscience, 87, 497–507.

    Article  CAS  PubMed  Google Scholar 

  • Grant, J. E., Hu, J., Liu, T., Jain, M. R., Elkabes, S., & Li, H. (2007). Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. Journal of Proteome Research, 6, 2786–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann, T. L., Connor, J. X., & Messing, A. (2006). Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. The Journal of Neuroscience, 26, 11162–11173.

    Article  CAS  PubMed  Google Scholar 

  • Harre, U., Georgess, D., Bang, H., Bozec, A., Axmann, R., Ossipova, E., Jakobsson, P. J., Baum, W., Nimmerjahn, F., Szarka, E., Sarmay, G., Krumbholz, G., Neumann, E., Toes, R., Scherer, H. U., Catrina, A. I., Klareskog, L., Jurdic, P., & Schett, G. (2012). Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. The Journal of Clinical Investigation, 122, 1791–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A., Wilson, L., Barnes, S., Goldman, J., Muddiman, D. C., & Brenner, M. (2016). Composition of Rosenthal fibers, the protein aggregate hallmark of Alexander disease. Journal of Proteome Research, 15, 2265–2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojo-Nakashima, I., Sato, R., Nakashima, K., Hagiwara, T., & Yamada, M. (2009). Dynamic expression of peptidylarginine deiminase 2 in human monocytic leukaemia THP-1 cells during macrophage differentiation. Journal of Biochemistry, 146, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, P. C., Liao, Y. F., Lin, C. L., Lin, W. H., Liu, G. Y., & Hung, H. C. (2014). Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells. Molecules and Cells, 37, 426–434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Inagaki, M., Takahara, H., Nishi, Y., Sugawara, K., & Sato, C. (1989). Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. The Journal of Biological Chemistry, 264, 18119–18127.

    CAS  PubMed  Google Scholar 

  • Ishigami, A., Ohsawa, T., Hiratsuka, M., Taguchi, H., Kobayashi, S., Saito, Y., Murayama, S., Asaga, H., Toda, T., Kimura, N., & Maruyama, N. (2005). Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. Journal of Neuroscience Research, 80, 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Ishigami, A., Masutomi, H., Handa, S., Nakamura, M., Nakaya, S., Uchida, Y., Saito, Y., Murayama, S., Jang, B., Jeon, Y. C., Choi, E. K., Kim, Y. S., Kasahara, Y., Maruyama, N., & Toda, T. (2015). Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer’s disease brains. Journal of Neuroscience Research, 93, 1664–1674.

    Article  CAS  PubMed  Google Scholar 

  • Jang, B., Kim, E., Choi, J. K., Jin, J. K., Kim, J. I., Ishigami, A., Maruyama, N., Carp, R. I., Kim, Y. S., & Choi, E. K. (2008). Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice—A possible role in pathogenesis. The American Journal of Pathology, 173, 1129–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, B., Jin, J. K., Jeon, Y. C., Cho, H. J., Ishigami, A., Choi, K. C., Carp, R. I., Maruyama, N., Kim, Y. S., & Choi, E. K. (2010). Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt–Jakob disease. Acta Neuropathologica, 119, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Jang, B., Shin, H. Y., Choi, J. K., Nguyen, d. P. T., Jeong, B. H., Ishigami, A., Maruyama, N., Carp, R. I., Kim, Y. S., & Choi, E. K. (2011). Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: Nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. Journal of Neuropathology and Experimental Neurology, 70, 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Z., Fu, Z., Yang, J., Troncosco, J., Everett, A. D., & Van Eyk, J. E. (2013). Identification and characterization of citrulline-modified brain proteins by combining HCD and CID fragmentation. Proteomics, 13, 2682–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U., & Herrmann, H. (2015). Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.

    Article  PubMed  Google Scholar 

  • Lange, S., Gogel, S., Leung, K. Y., Vernay, B., Vocholas, A. P., Sausey, C. P., Thompson, P. R., Greene, N. D., & Feretti, P. (2011). Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 355, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Johnson, A. B., Salomons, G. S., van der Knaap, M. S., Rodriguez, D., Boespflug-Tanguy, O., Gorospe, J. R., Goldman, J. E., Messing, A., & Brenner, M. (2006a). Propensity for paternal inheritance of de novo mutations in Alexander disease. Human Genetics, 119, 137–144.

    Article  PubMed  Google Scholar 

  • Li, H., Guo, Y., Teng, J., Ding, M., AC, Y., & Chen, J. (2006b). 14-3-3 gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP. Journal of Cell Science, 119, 4452–4461.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, T., Takuma, K., Nishiguchi, E., Hashimoto, H., Azuma, J., & Baba, A. (1996). Involvement of Na+-Ca2+ exchanger in reperfusion-induced delayed cell death of cultured rat astrocytes. The European Journal of Neuroscience, 8, 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama, M., Tanaka, H., Inoko, A., Goto, H., Yonemura, S., Kobori, K., Hayashi, Y., Kondo, E., Itohara, S., Izawa, I., & Inagaki, M. (2013). Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. The Journal of Biological Chemistry, 288, 35626–35635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick, M. B., Kouklis, P., Syder, A., & Fuchs, E. (1993). The roles of the rod end and the tail in vimentin IF assembly and IF network formation. The Journal of Cell Biology, 122, 395–407.

    Article  CAS  PubMed  Google Scholar 

  • Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., & Brenner, M. (1998). Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. The American Journal of Pathology, 152, 391–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moeton, M., Stassen, O. M., Sluijs, J. A., van der Meer, V. W., Kluivers, L. J., van Hoorn, H., Schmidt, T., Reits, E. A., van Strien, M. E., & Hol, E. M. (2016). GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cellular and Molecular Life Sciences, 73, 4101–4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscarello, M. A., Lei, H., Mastronardi, F. G., Winer, S., Tsui, H., Li, Z., Ackerley, C., Zhang, L., Raijmakers, R., & Wood, D. D. (2013). Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Disease Models & Mechanisms, 6, 467–478.

    Article  CAS  Google Scholar 

  • Nicholas, A. P. (2011). Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neuroscience Letters, 495, 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P. (2013). Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neuroscience Letters, 545, 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas, A. P., & Whitaker, J. N. (2002). Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia, 37, 328–336.

    Article  PubMed  Google Scholar 

  • Nicholas, A. P., King, J. L., Sambandam, T., Echols, J. D., Gupta, K. B., McInnis, C., & Whitaker, J. N. (2003). Immunohistochemical localization of citrullinated proteins in adult rat brain. The Journal of Comparative Neurology, 459, 251–266.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Tourtellotte, W. W. (2004). Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. The Journal of Comparative Neurology, 473, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Barnum, S. R. (2005). Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Lu, L., Heaven, M., Kadish, I., Van Groen, T., Accaviti-Loper, M. A., Wewering, S., Kofskey, D., Gambetti, P., & Brenner, M. (2014). Ongoing studies of deimination in neurodegenerative diseases using the F95 antibody. In S. Bhattacharya & A. P. Nicholas (Eds.), Protein deimination in human health and disease (pp. 257–280). New York: Springer.

    Chapter  Google Scholar 

  • Orrenius, S., Zhivotovsky, B., & Nicotera, P. (2003). Regulation of cell death: The calcium-apoptosis link. Nature Reviews. Molecular Cell Biology, 4, 552–565.

    Article  CAS  PubMed  Google Scholar 

  • Pekny, M. (2001). Astrocytic intermediate filaments: Lessons from GFAP and vimentin knock-out mice. Progress in Brain Research, 132, 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Prust, M., Wang, J., Morizono, H., Messing, A., Brenner, M., Gordon, E., Hartka, T., Sokohl, A., Schiffmann, R., Gordish-Dressman, H., Albin, R., Amartino, H., Brockman, K., Dinopoulos, A., Dotti, M. T., Fain, D., Fernandez, R., Ferreira, J., Fleming, J., Gill, D., Griebel, M., Heilstedt, H., Kaplan, P., Lewis, D., Nakagawa, M., Pedersen, R., Reddy, A., Sawaishi, Y., Schneider, M., Sherr, E., Takiyama, Y., Wakabayashi, K., Gorospe, J. R., & Vanderver, A. (2011). GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology, 77, 1287–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raijmakers, R., Vogelzangs, J., Croxford, J. L., Wesseling, P., van Venrooij, W. J., & Pruijn, G. J. (2005). Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486, 243–253.

    Article  PubMed  Google Scholar 

  • Raijmakers, R., Vogelzangs, J., Raats, J., Panzenbeck, M., Corby, M., Jiang, H., Thibodeau, M., Haynes, N., van Venrooij, W. J., Pruijn, G. J., & Werneburg, B. (2006). Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. The Journal of Comparative Neurology, 498, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., & Pappin, D. J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics, 3, 1154–1169.

    Article  CAS  Google Scholar 

  • Sambandam, T., Belousova, M., Accaviti-Loper, M. A., Blanquicett, C., Guercello, V., Raijmakers, R., & Nicholas, A. P. (2004). Increased peptidylarginine deiminase type II in hypoxic astrocytes. Biochemical and Biophysical Research Communications, 325, 1324–1329.

    Article  CAS  PubMed  Google Scholar 

  • Senshu, T., Sato, T., Inoue, T., Akiyama, K., & Asaga, H. (1992). Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Analytical Biochemistry, 203, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, N., Handa, S., Uchida, Y., Fukuda, M., Maruyama, N., Asaga, H., Choi, E. K., Lee, J., & Ishigami, A. (2010). Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. Journal of Neuroscience Research, 88, 798–806.

    CAS  PubMed  Google Scholar 

  • Shoeman, R. L., Hartig, R., Berthel, M., & Traub, P. (2002). Deletion mutagenesis of the amino-terminal head domain of vimentin reveals dispensability of large internal regions for intermediate filament assembly and stability. Experimental Cell Research, 279, 344–353.

    Article  CAS  PubMed  Google Scholar 

  • Snider, N. T., & Omary, M. B. (2014). Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nature Reviews. Molecular Cell Biology, 15, 163–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takuma, K., Lee, E., Kidawara, M., Mori, K., Kimura, Y., Baba, A., & Matsuda, T. (1999). Apoptosis in Ca2 + reperfusion injury of cultured astrocytes: Roles of reactive oxygen species and NF-kappaB activation. The European Journal of Neuroscience, 11, 4204–4212.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K. F., Takebayashi, H., Yamazaki, Y., Ono, K., Naruse, M., Iwasato, T., Itohara, S., Kato, H., & Ikenaka, K. (2007). Murine model of Alexander disease: Analysis of GFAP aggregate formation and its pathological significance. Glia, 55, 617–631.

    Article  PubMed  Google Scholar 

  • Tang, G., Perng, M. D., Wilk, S., Quinlan, R., & Goldman, J. E. (2010). Oligomers of mutant glial fibrillary acidic protein (GFAP) inhibit the proteasome system in Alexander disease astrocytes, and the small heat shock protein alpha B-crystallin reverses the inhibition. The Journal of Biological Chemistry, 285, 10527–10537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent, S. R., Leung, E., & Watanabe, K. (1992). Immunohistochemical localization of peptidylarginine deiminase in the rat brain. Journal of Chemical Neuroanatomy, 5, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Despres, N., Lapointe, E., van der Heijden, A., Lora, M., Senshu, T., van Venrooij, W. J., & Menard, H. A. (2004). Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Research & Therapy, 6, R142–R150.

    Article  CAS  Google Scholar 

  • Wang, G., & Mao, Z. (2014). Chaperone-mediated autophagy: Roles in neurodegeneration. Translational Neurodegeneration, 3, 20. doi:10.1186/2047-9158-3-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Colodner, K. J., & Feany, M. B. (2011). Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model. The Journal of Neuroscience, 31, 2868–2877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Chen, F. F., Gao, W. B., Wang, H. Y., Zhao, N. W., Xu, M., Gao, D. Y., Yu, W., Yan, X. L., Zhao, J. N., & Li, X. J. (2016). Identification of citrullinated peptides in the synovial fluid of patients with rheumatoid arthritis using LC-MALDI-TOF/TOF. Clinical Rheumatology, 35, 2185–2194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood, D. D., Ackerley, C. A., Brand, B., Zhang, L., Raijmakers, R., Mastronardi, F. G., & Moscarello, M. A. (2008). Myelin localization of peptidylarginine deiminases 2 and 4: Comparison of PAD2 and PAD4 activities. Laboratory Investigation, 88, 354–364.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brenner, M., Nicholas, A.P. (2017). The Significance of Deiminated GFAP in Neurodegenerative Diseases with Special Emphasis on Alexander Disease. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_20

Download citation

Publish with us

Policies and ethics