Skip to main content

Regulation of Apoptosis by Bcl-2 Family Proteins in Liver Injury

  • Chapter
  • First Online:
Molecules, Systems and Signaling in Liver Injury

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Hepatocyte apoptosis is regulated by a fine balance of Bcl-2 family proteins. All apoptotic stimuli combine to induce Bak/Bax activation, which results in mitochondrial outer membrane permeability (MOMP). Once MOMP occurs, apoptosis is initiated by the activation of downstream caspases. Therefore, the regulation of Bak/Bax activation is critical for the regulation of hepatocyte apoptosis. Bak/Bax activation is determined by the balance between anti-apoptotic Bcl-2 family proteins and BH3-only proteins. In hepatocytes, Bcl-xL and Mcl-1 cooperatively play important roles as anti-apoptotic Bcl-2 family proteins, whereas Bid, Bim and PUMA act as BH3-only proteins. The aforementioned balance applies to both physiological and pathological conditions. A lack of Bcl-xL or Mcl-1 alters this balance in favour of Bak/Bax activation, leading to apoptosis. The further ablation of Bid or Bim reverses this effect, inhibiting Bak/Bax activation and leading to the suppression of apoptosis. Bcl-xL or Mcl-1-deficient hepatocytes evade apoptosis due to deficiencies in both Bid and Bim. In this chapter, we focus on the balance between anti-apoptotic Bcl-2 family proteins and BH3-only proteins; both types of proteins serve as key regulators of Bak/Bax activation, an essential event in hepatocyte apoptosis. We also discuss the involvement of Bcl-2 family proteins in liver disease, viral and autoimmune hepatitis, steatohepatitis and hepatocellular carcinoma. The regulation of Bcl-2 family proteins is a potent method of controlling hepatocyte cell death. Therapies targeted to Bcl-2 family proteins are being developed for clinical use, particularly for patients with hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

BH:

BCL-2 homology

ER:

Endoplasmic reticulum

HCC:

Hepatocellular carcinoma

LPS:

Lipopolysaccharide

MOMP:

Mitochondrial outer membrane permeability

NASH:

Non-alcoholic steatohepatitis

TNF:

Tumour necrosis factor

References

  • Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S et al (2010) Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J Hepatol 52(4):586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akazawa Y, Guicciardi ME, Cazanave SC, Bronk SF, Werneburg NW, Kakisaka K et al (2013) Degradation of cIAPs contributes to hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 305(9):G611–G619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anstee QM, Concas D, Kudo H, Levene A, Pollard J, Charlton P et al (2010) Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 53(3):542–550

    Article  CAS  PubMed  Google Scholar 

  • Aouacheria A, Combet C, Tompa P, Hardwick JM (2015) Redefining the BH3 death domain as a ‘short linear motif’. Trends Biochem Sci 40(12):736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y et al (2009) JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 284(39):26591–26602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ (2010) CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 299(1):G236–G243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazanave SC, Mott JL, Bronk SF, Werneburg NW, Fingas CD, Meng XW et al (2011) Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem 286(45):39336–39348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Doerflinger M, Glab JA, Puthalakath H (2015) BH3-only proteins: a 20-year stock-take. FEBS J 282(6):1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T (2011) BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem 286(1):491–501

    Article  CAS  PubMed  Google Scholar 

  • Edwards AL, Gavathiotis E, LaBelle JL, Braun CR, Opoku-Nsiah KA, Bird GH et al (2013) Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Chem Biol 20(7):888–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD et al (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125(2):437–443

    Article  PubMed  Google Scholar 

  • García Sáez AJ, Villunger A (2016) MOMP in the absence of BH3-only proteins. Genes Dev 30(8):878–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7(12):a006080

    Google Scholar 

  • Guicciardi ME, Gores GJ (2005) Apoptosis: a mechanism of acute and chronic liver injury. Gut 54(7):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guicciardi ME, Malhi H, Mott JL, Gores GJ (2013) Apoptosis and necrosis in the liver. Compr Physiol 3(2):977–1010

    PubMed  Google Scholar 

  • Hamasaki A, Sendo F, Nakayama K, Ishida N, Negishi I, Hatakeyama S (1998) Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 188(11):1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Mita E (1997) Fas system and apoptosis in viral hepatitis. J Gastroenterol Hepatol 12(9–10):S223–S226

    Article  CAS  PubMed  Google Scholar 

  • Hikita H, Takehara T, Kodama T, Shimizu S, Hosui A, Miyagi T et al (2009a) BH3-only protein bid participates in the Bcl-2 network in healthy liver cells. Hepatology 50(6):1972–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T et al (2009b) Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 50(4):1217–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K et al (2010) The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52(4):1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Hikita H, Takehara T, Kodama T, Shimizu S, Shigekawa M, Hosui A et al (2011) Delayed-onset caspase-dependent massive hepatocyte apoptosis upon Fas activation in Bak/Bax-deficient mice. Hepatology 54(1):240–251

    Article  CAS  PubMed  Google Scholar 

  • Hikita H, Kodama T, Shimizu S, Li W, Shigekawa M, Tanaka S et al (2012) Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis. J Hepatol 57(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Hikita H, Kodama T, Tanaka S, Saito Y, Nozaki Y, Nakabori T et al (2015) Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis. Cancer Prev Res (Phila) 8(8):693–701

    Article  CAS  Google Scholar 

  • Hirsova P, Ibrahim SH, Gores GJ, Malhi H (2016) Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 57(10):1758–1770

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang T, Liang S, Li W, Wu X, Jin F (2015) Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet. Appl Microbiol Biotechnol 99(21):9111–9122

    Article  CAS  PubMed  Google Scholar 

  • Khoo KH, Hoe KK, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13(3):217–236

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Hikita H, Kawaguchi T, Saito Y, Tanaka S, Shigekawa M et al (2013) The Bcl-2 homology 3 (BH3)-only proteins Bim and Bid are functionally active and restrained by anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) family proteins in healthy liver. J Biol Chem 288(42):30009–30018

    Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535

    Article  CAS  PubMed  Google Scholar 

  • Leifeld L, Nattermann J, Fielenbach M, Schmitz V, Sauerbruch T, Spengler U (2006) Intrahepatic activation of caspases in human fulminant hepatic failure. Liver Int 26(7):872–879

    Article  CAS  PubMed  Google Scholar 

  • Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL et al (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B et al (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135(6):1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147(4):765–783.e764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna-Vargas MP, Chipuk JE (2016) Physiological and pharmacological control of BAK, BAX, and beyond. Trends CellBiol 26(12):906–917

    Google Scholar 

  • Malhi H, Guicciardi M, Gores G (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90(3):1165–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai K, Miyagi T, Nishio K, Yokoyama Y, Yoshioka T, Saito Y et al (2016) S100A8 production in CXCR2-expressing CD11b+gr-1high cells aggravates hepatitis in mice fed a high-fat and high-cholesterol diet. J Immunol 196(1):395–406

    Article  CAS  PubMed  Google Scholar 

  • Nagata S (1996) Apoptosis mediated by the Fas system. Prog Mol Subcell Biol 16:87–103

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364(6440):806–809

    Article  CAS  PubMed  Google Scholar 

  • Pockros P, Schiff E, Shiffman M, McHutchison J, Gish R, Afdhal N et al (2007) Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 46(2):324–329

    Article  CAS  PubMed  Google Scholar 

  • Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N et al (1998) Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 95(21):12424–12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratziu V, Sheikh MY, Sanyal AJ, Lim JK, Conjeevaram H, Chalasani N et al (2012) A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 55(2):419–428

    Article  CAS  PubMed  Google Scholar 

  • Roh YS, Seki E (2013) Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 28(Suppl 1):38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD et al (1998) Testicular degeneration in Bclw-deficient mice. Nat Genet 18(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli K et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274(32):22532–22538

    Article  CAS  PubMed  Google Scholar 

  • Shiffman ML, Pockros P, McHutchison JG, Schiff ER, Morris M, Burgess G (2010) Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor – a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther 31(9):969–978

    CAS  PubMed  Google Scholar 

  • Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A et al (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52(5):698–704

    Article  CAS  PubMed  Google Scholar 

  • Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S et al (2006) Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol 44(1):151–157

    Article  CAS  PubMed  Google Scholar 

  • Sommerfeld A, Reinehr R, Häussinger D (2015) Free fatty acids shift insulin-induced hepatocyte proliferation towards CD95-dependent apoptosis. J Biol Chem 290(7):4398–4409

    Article  CAS  PubMed  Google Scholar 

  • Takehara T, Takahashi H (2003) Suppression of Bcl-xL deamidation in human hepatocellular carcinomas. Cancer Res 63(12):3054–3057

    CAS  PubMed  Google Scholar 

  • Takehara T, Liu X, Fujimoto J, Friedman S, Takahashi H (2001) Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 34(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Takehara T, Tatsumi T, Suzuki T, Rucker E r, Hennighausen L, Jinushi M et al (2004) Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 127(4):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S et al (2016) Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease. Hepatology 64(6):1994–2014

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195(2):158–167

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228(4706):1440–1443

    Article  CAS  PubMed  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442

    Article  CAS  PubMed  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75(2):229–240

    Article  CAS  PubMed  Google Scholar 

  • Vela L, Gonzalo O, Naval J, Marzo I (2013) Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 288(7):4935–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vick B, Weber A, Urbanik T, Maass T, Teufel A, Krammer PH et al (2009) Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 49(2):627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl K, Siegemund M, Lehner F, Vondran F, Nüssler A, Länger F et al (2013) Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology 57(2):625–636

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Boger R, Vick B, Urbanik T, Haybaeck J, Zoller S et al (2010) Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 51(4):1226–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ (2007) Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282(39):28960–28970

    Article  CAS  PubMed  Google Scholar 

  • Werneburg NW, Bronk SF, Guicciardi ME, Thomas L, Dikeakos JD, Thomas G et al (2012) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2). J Biol Chem 287(29):24427–24437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315(5813):856–859

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400(6747):886–891

    Article  CAS  PubMed  Google Scholar 

  • Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 283(14):2690–2700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Takehara MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hikita, H., Takehara, T. (2017). Regulation of Apoptosis by Bcl-2 Family Proteins in Liver Injury. In: Ding, WX., Yin, XM. (eds) Molecules, Systems and Signaling in Liver Injury. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58106-4_5

Download citation

Publish with us

Policies and ethics