Skip to main content

Other Diagnostic Tools for Neurological Disease in Cancer: EEG, EMG, and Lumbar Puncture

  • Chapter
  • First Online:
Cancer Neurology in Clinical Practice

Abstract

The leptomeninges, spinal fluid and peripheral nerves can serve as sanctuary sites for leukemia. Neurologic complications arise from direct leukemic infiltration of the central and peripheral nervous system, indirect leukemic effects (for example, cerebral leukostasis, cerebrovascular accidents, paraneoplastic syndromes), effect from treatments or stem cell transplant (for example, graft versus host disease, immune reconstitution inflammatory syndrome) or immune compromise. This review discusses the clinical manifestations of neurologic complications in leukemia patients, and reviews the recent advances in their diagnosis and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neidermeyer E, De Silva FL. Electroencephalography: basic principles, clinical applications and related fields. Philadelphia: Lippincott, Williams and Wilkins; 2005. p. 1–14.

    Google Scholar 

  2. Caton R. The electric currents of the brain. Br Med J. 1875;2:278.

    Google Scholar 

  3. Tudor M, Tudor L, Tudor KI. Hans Berger (1873-1941)—the history of electroencephalography. Acta Med Croatica. 2005;59(4):307–13.

    PubMed  Google Scholar 

  4. Jasper H. Report of committee on methods of clinical exam in EEG. Electroencephalogr Clin Neurophysiol. 1958;10:370–5.

    Article  Google Scholar 

  5. Wyllie E. Wyllie’s treatment of epilepsy principles and practice. 5th ed. Philadelphia: Lippincot Williams & Wilkins; 2011.

    Google Scholar 

  6. Liigant A, Haldre S, Oun A, et al. Seizure disorders in patients with brain tumors. Eur Neurol. 2001;45(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lynam LM, Lyons MK, Drazkowski JF, et al. Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg. 2007;109(7):634–8.

    Article  PubMed  Google Scholar 

  8. Ruda R, Trevisan E, Soffietti R. Epilepsy and brain tumors. Curr Opin Oncol. 2010;22(6):611–20.

    Article  PubMed  Google Scholar 

  9. Towne AR, Waterhouse EJ, Boggs JG, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  10. Carrera E, Claassen J, Oddo M, Emerson RG, Mayer SA, Hirsch LJ. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65(12):1612–8.

    Article  PubMed  Google Scholar 

  11. Kaplan PW, Sutter R. Electroencephalography of autoimmune limbic encephalopathy. J Clin Neurophysiol. 2013;30(5):490–504.

    Article  PubMed  Google Scholar 

  12. Hirsch JF, Buisson-Ferey J, Sachs M, Hirsch JC, Scherrer J. Electrocorticogram and unitary activities with expanding lesions in man. Electroencephalogr Clin Neurophysiol. 1966;21(5):417–28.

    Article  CAS  PubMed  Google Scholar 

  13. Daly DD, Pedley TA. Current practice of clinical encephalopathy. 2nd ed. New York: Raven Press; 1990.

    Google Scholar 

  14. IFSECN. A glossary of terms commonly used by clinical electroencephalgraphers. Electroencephalogr Clin Neurophysiol. 1974;37:538–48.

    Google Scholar 

  15. Blume WT, Girvin JP, Kaufmann JC. Childhood brain tumors presenting as chronic uncontrolled focal seizure disorders. Ann Neurol. 1982;12(6):538–41.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Morales I, Garcia MT, Galan-Davila L, et al. Periodic lateralized epileptiform discharges: etiology, clinical aspects, seizures, and evolution in 130 patients. J Clin Neurophysiol. 2002;19(2):172–7.

    Article  PubMed  Google Scholar 

  17. Trinka E, Hofler J, Zerbs A. Causes of status epilepticus. Epilepsia. 2012;53(Suppl 4):127–38.

    Article  PubMed  Google Scholar 

  18. Aminoff MJ, Simon RP. Status epilepticus. Causes, clinical features and consequences in 98 patients. Am J Med. 1980;69(5):657–66.

    Article  CAS  PubMed  Google Scholar 

  19. Mayer SA, Claassen J, Lokin J, Mendelsohn F, Dennis LJ, Fitzsimmons BF. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol. 2002;59(2):205–10.

    Article  PubMed  Google Scholar 

  20. Cockerell OC, Rothwell J, Thompson PD, Marsden CD, Shorvon SD. Clinical and physiological features of epilepsia partialis continua. Cases ascertained in the UK. Brain. 1996;119(Pt 2):393–407.

    Article  PubMed  Google Scholar 

  21. Thomas JE, Reagan TJ, Klass DW. Epilepsia partialis continua. A review of 32 cases. Arch Neurol. 1997;34:266–75.

    Google Scholar 

  22. Drislane FW. Presentation, evaluation, and treatment of nonconvulsive status epilepticus. Epilepsy Behav. 2000;1(5):301–14.

    Article  CAS  PubMed  Google Scholar 

  23. Cocito L, Audenino D, Primavera A. Altered mental state and nonconvulsive status epilepticus in patients with cancer. Arch Neurol. 2001;58(8):1310.

    Article  CAS  PubMed  Google Scholar 

  24. Cavaliere R, Farace E, Schiff D. Clinical implications of status epilepticus in patients with neoplasms. Arch Neurol. 2006;63(12):1746–9.

    Article  PubMed  Google Scholar 

  25. Avila EK, Graber J. Seizures and epilepsy in cancer patients. Curr Neurol Neurosci Rep. 2010;10(1):60–7.

    Article  PubMed  Google Scholar 

  26. Van der Drift JHA. The significance of electroencephalography for the diagnosis and localization of cerebral tumors. Leiden: H. E. Stenfert Kroese; 1957.

    Google Scholar 

  27. Lieu AS, Howng SL. Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy Res. 2000;38(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  28. Prayson RA. Diagnostic challenges in the evaluation of chronic epilepsy-related surgical neuropathology. Am J Surg Pathol. 2010;34(5):e1–13.

    Article  PubMed  Google Scholar 

  29. Danfors T, Ribom D, Berntsson SG, Smits A. Epileptic seizures and survival in early disease of grade 2 gliomas. Eur J Neurol. 2009;16(7):823–31.

    Article  CAS  PubMed  Google Scholar 

  30. Daly DD, Thomas JE. Sequential alterations in the electroencephalograms of patients with brain tumors. Electroencephalogr Clin Neurophysiol. 1958;10(3):395–404.

    Article  CAS  PubMed  Google Scholar 

  31. Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B. The course of seizure disorders in patients with malignant gliomas. Arch Neurol. 1995;52(7):717–24.

    Article  CAS  PubMed  Google Scholar 

  32. Riva M, Salmaggi A, Marchioni E, et al. Tumour-associated epilepsy: clinical impact and the role of referring centres in a cohort of glioblastoma patients. A multicentre study from the Lombardia Neurooncology Group. Neurol Sci. 2006;27(5):345–51.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher-Williams M, Last SL, Lyberi G, Northfield DW. Clinico-EEG study of 128 gliomas and 50 intracranial metastatic tumours. Brain. 1962;85:1–46.

    Article  CAS  PubMed  Google Scholar 

  34. Klass DW, Bickford RG. The electroencephalogram in metastatic tumors of the brain. Neurology. 1958;8(5):333–7.

    Article  CAS  PubMed  Google Scholar 

  35. Neufield MY, Chistik V, Chapman J, Korczyn AS. Intermittent rhythmic delta activity (IRDA) morphology cannot distinguish between focal and diffuse brain disturbances. J Neurosci. 1999;164(1):56–9.

    Google Scholar 

  36. Nau HE, Bock WJ, Clar HE. Electroencephalographic investigations in sellar tumours, with special regard to different methods of operative treatment. Acta Neurochir (Wien). 1978;44(3–4):207–214.

    Google Scholar 

  37. Jasper H, Van Buren J. Interrelationship between cortex and subcortical structures. Clinical and electroencephalographic studies. Electroencephalogr Clin Neurophysiol. 1953;4:168–88.

    Google Scholar 

  38. Valk PE, Dillon WP. Radiation injury of the brain. AJNR Am J Neuroradiol. 1991;12(1):45–62.

    CAS  PubMed  Google Scholar 

  39. Martins AN, Johnston JS, Henry JM, Stoffel TJ, Di Chiro G. Delayed radiation necrosis of the brain. J Neurosurg. 1977;47(3):336–45.

    Article  CAS  PubMed  Google Scholar 

  40. Morris PG, Gutin PH, Avila EK, Rosenblum MK, Lassman AB. Seizures and radionecrosis from non-small-cell lung cancer presenting as increased fluorodeoxyglucose uptake on positron emission tomography. J Clin Oncol. 2011;29(12):e324–6.

    Article  PubMed  Google Scholar 

  41. Tuxen MK, Hansen SW. Neurotoxicity secondary to antineoplastic drugs. Cancer Treat Rev. 1994;20(2):191–214.

    Article  CAS  PubMed  Google Scholar 

  42. Salsano E, Rizzo A, Bedini G, et al. An autoinflammatory neurological disease due to interleukin 6 hypersecretion. J Neuroinflammation. 2013;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawn ND, Westmoreland BF, Kiely MJ, Lennon VA, Vernino S. Clinical, magnetic resonance imaging, and electroencephalographic findings in paraneoplastic limbic encephalitis. Mayo Clin Proc. 2003;78(11):1363–8.

    Article  PubMed  Google Scholar 

  44. Davis R, Dalmau J. Autoimmunity, seizures, and status epilepticus. Epilepsia. 2015;54:46–9.

    Article  CAS  Google Scholar 

  45. Dalmau J, Graus F, Rosenblum MK, Posner JB. Anti-Hu–associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine (Baltimore). 1992;71(2):59–72.

    Google Scholar 

  46. Iizuka T, Sakai F, Ide T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70(7):504–11.

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, Friedman D. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):1094–100.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lai M, Hughes EG, Peng X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65(4):424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  50. Pozo-Rosich P, Clover L, Saiz A, Vincent A, Graus F. Voltage-gated potassium channel antibodies in limbic encephalitis. Ann Neurol. 2003;54(4):530–3.

    Article  CAS  PubMed  Google Scholar 

  51. Galvani L. De viribus electrocitatis in motu musculari commentaries. Proc Bologna Acad Inst Sci Arts. 1791;7:363.

    Google Scholar 

  52. Volta A. Account of some discoveries made by Mr. Galvani of Bologna: with experiments and observations on them. Phil Trans R Soc Lond. 1793;83:10.

    Google Scholar 

  53. De Duchenne G. L’ectrisation Localisee et de son application a la Physiologie, a la Pathologie et a la Therapeutique. Paris: JB Bailliere; 1871.

    Google Scholar 

  54. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia: F.A. Davis; 1985.

    Google Scholar 

  55. Helmholtz H. Vorloufiger Bericht uber die Fortpflanzungsgeschwindigkeit der Nervenreinzung. Arch Anat Physiol Wiss Med. 1850;71.

    Google Scholar 

  56. Erb W. Handbuch der Electrotherapie. Leipzig: FCW Vogel; 1882.

    Google Scholar 

  57. Gasser HS, Erlanger J. A study of the action currents of nerve with the cathode ray oscillography. Am J Physiol. 1922;62:496.

    Google Scholar 

  58. Proebster R. Muskelationsstrome am gesunden und kranken menschen. Zeit fur Orthopadische Chirurgie. 1928;50:1.

    Google Scholar 

  59. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. 2nd ed. Philadelphia: Elsevier; 2005.

    Google Scholar 

  60. Daube J. Clinical neurophysiology. 3rd ed. New York: Oxford; 2009.

    Google Scholar 

  61. Mallik A, Weir AI. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii23–31.

    Google Scholar 

  62. Schoeck AP, Mellion ML, Gilchrist JM, Christian FV. Safety of nerve conduction studies in patients with implanted cardiac devices. Muscle Nerve. 2007;35(4):521–4.

    Article  PubMed  Google Scholar 

  63. DeAngelis LM, Posner JB. Neurologic complications of cancer. New York: Oxford University Press; 2009.

    Google Scholar 

  64. Ramchandren S, Dalmau J. Metastases to the peripheral nervous system. J Neurooncol. 2005;75(1):101–10.

    Article  PubMed  Google Scholar 

  65. Antoine JC, Camdessanche JP. Peripheral nervous system involvement in patients with cancer. Lancet Neurol. 2007;6(1):75–86.

    Article  PubMed  Google Scholar 

  66. Kelly JJ, Karcher DS. Lymphoma and peripheral neuropathy: a clinical review. Muscle Nerve. 2005;31(3):301–13.

    Article  PubMed  Google Scholar 

  67. Darnell RB, Posner JB. Paraneoplastic syndromes affecting the nervous system. Semin Oncol. 2006;33(3):270–98.

    Article  PubMed  Google Scholar 

  68. Vigliani MC, Magistrello M, Polo P, et al. Risk of cancer in patients with Guillain-Barre syndrome (GBS). A population-based study. J Neurol. 2004;251(3):321–6.

    Article  PubMed  Google Scholar 

  69. Lisak RP, Mitchell M, Zweiman B, Orrechio E, Asbury AK. Guillain-Barre Syndrome and Hodgkin’s Disease: three cases with immunological studies. Ann Neurol. 1977;1(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  70. Gordon PH, Wilbourn AJ. Early electrodiagnostic findings in Guillain-Barre syndrome. Arch Neurol. 2001;58(6):913–7.

    Article  CAS  PubMed  Google Scholar 

  71. Antoine JC, Mosnier JF, Lapras J, et al. Chronic inflammatory demyelinating polyneuropathy associated with carcinoma. J Neurol Neurosurg Psychiatry. 1996;60(2):188–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bird SJ, Brown MJ, Shy ME, Scherer SS. Chronic inflammatory demyelinating polyneuropathy associated with malignant melanoma. Neurology. 1996;46:822–4.

    Article  CAS  PubMed  Google Scholar 

  73. Dalakas MC. Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta. 2015;1852(4):658–66.

    Article  CAS  PubMed  Google Scholar 

  74. Kelly JJ Jr. Peripheral neuropathies associated with monoclonal proteins: a clinical review. Muscle Nerve. 1985;8(2):138–50.

    Article  PubMed  Google Scholar 

  75. Vital A, Vital C, Julien J, Baquey A, Steck AJ. Polyneuropathy associated with IgM monoclonal gammopathy. Immunological and pathological study in 31 patients. Acta Neuropathol. 1989;79(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  76. Antoine JC, Honnorat J, Camdessanche JP, et al. Paraneoplastic anti-CV2 antibodies react with peripheral nerve and are associated with a mixed axonal and demyelinating peripheral neuropathy. Ann Neurol. 2001;49(2):214–21.

    Article  CAS  PubMed  Google Scholar 

  77. Camdessanche JP, Antoine JC, Honnorat J, et al. Paraneoplastic peripheral neuropathy associated with anti-Hu antibodies. A clinical and electrophysiological study of 20 patients. Brain. 2002;125(Pt 1):166–75.

    Article  PubMed  Google Scholar 

  78. Oh SJ, Gurtekin Y, Dropcho EJ, King P, Claussen GC. Anti-Hu antibody neuropathy: a clinical, electrophysiological, and pathological study. Clin Neurophysiol. 2005;116(1):28–34.

    Article  PubMed  Google Scholar 

  79. Abgrall S, Mouthon L, Cohen P, et al. Localized neurological necrotizing vasculitides. Three cases with isolated mononeuritis multiplex. J Rheumatol. 2001;28(3):631–3.

    CAS  PubMed  Google Scholar 

  80. Fain O, Hamidou M, Cacoub P, et al. Vasculitides associated with malignancies: analysis of sixty patients. Arthritis Rheum. 2007;57(8):1473–80.

    Article  PubMed  Google Scholar 

  81. Bouche P, Leger JM, Travers MA, Cathala HP, Castaigne P. Peripheral neuropathy in systemic vasculitis: clinical and electrophysiologic study of 22 patients. Neurology. 1986;36(12):1598–602.

    Article  CAS  PubMed  Google Scholar 

  82. Newsom-Davis J, Buckley C, Clover L, et al. Autoimmune disorders of neuronal potassium channels. Ann N Y Acad Sci. 2003;998:202–10.

    Article  CAS  PubMed  Google Scholar 

  83. Caress JB, Abend WK, Preston DC, Logigian EL. A case of Hodgkin’s lymphoma producing neuromyotonia. Neurology. 1997;49(1):258–9.

    Article  CAS  PubMed  Google Scholar 

  84. Walch JC. Neuromyotonia: an unusual presentation of intrathoracic malignancy. J Neurol Neurosurg Psychiatry. 1976;39:1086–91.

    Article  Google Scholar 

  85. Murinson BB. Stiff-person syndrome. Neurologist. 2004;10(3):131–7.

    Article  PubMed  Google Scholar 

  86. Takamori M. Lambert-Eaton myasthenic syndrome as an autoimmune calcium channelopathy. Biochem Biophys Res Commun. 2004;322(4):1347–51.

    Article  CAS  PubMed  Google Scholar 

  87. Mills KR. Specialised electromyography and nerve conduction studies. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii36–40.

    Google Scholar 

  88. Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet. 2001;357(9250):96–100.

    Article  CAS  PubMed  Google Scholar 

  89. Levin MI, Mozaffar T, Al-Lozi MT, Pestronk A. Paraneoplastic necrotizing myopathy: clinical and pathological features. Neurology. 1998;50(3):764–7.

    Article  CAS  PubMed  Google Scholar 

  90. Zochodne DW, Ramsay DA, Saly V, Shelley S, Moffatt S. Acute necrotizing myopathy of intensive care: electrophysiological studies. Muscle Nerve. 1994;17(3):285–92.

    Article  CAS  PubMed  Google Scholar 

  91. Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol. 2002;249(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  92. Chen X, Stubblefield MD, Custodio CM, Hudis CA, Seidman AD, DeAngelis LM. Electrophysiological features of taxane-induced polyneuropathy in patients with breast cancer. J Clin Neurophysiol. 2013;30(2):199–203.

    Article  PubMed  Google Scholar 

  93. Chaudhry V, Eisenberger MA, Sinibaldi VJ, Sheikh K, Griffin JW, Cornblath DR. A prospective study of suramin-induced peripheral neuropathy. Brain. 1996;119(Pt 6):2039–52.

    Article  PubMed  Google Scholar 

  94. Chaudhry V, Cornblath DR, Corse A, Freimer M, Simmons-O’Brien E, Vogelsang G. Thalidomide-induced neuropathy. Neurology. 2002;59(12):1872–5.

    Article  CAS  PubMed  Google Scholar 

  95. Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006;24(19):3113–20.

    Article  CAS  PubMed  Google Scholar 

  96. Thaipisuttikul I, Chapman P, Avila EK. Peripheral neuropathy associated with ipilimumab: a report of 2 cases. J Immunother. 2015;38(2):77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pentsova E, Liu A, Rosenblum M, O’Reilly E, Chen X, Hormigo A. Gemcitabine induced myositis in patients with pancreatic cancer: case reports and topic review. J Neurooncol. 2012;106(1):15–21.

    Article  PubMed  Google Scholar 

  98. Harper CM Jr, Thomas JE, Cascino TL, Litchy WJ. Distinction between neoplastic and radiation-induced brachial plexopathy, with emphasis on the role of EMG. Neurology. 1989;39(4):502–6.

    Article  PubMed  Google Scholar 

  99. Lederman RJ, Wilbourn AJ. Brachial plexopathy: recurrent cancer or radiation? Neurology. 1984;34(10):1331–5.

    Article  CAS  PubMed  Google Scholar 

  100. McHenry LCJ. Garrison’s history of neurology. Springfield: Charles C. Thomas; 1969.

    Google Scholar 

  101. Viets HR. Domenico Contugno: His description of the cerebrospinal fluid with a translation of part of his “De isclude nervosa commentarius” (1764) and a bibliography of his important works. Bull Hist Med. 1935;3:701–38.

    Google Scholar 

  102. Fishman RA. Cerebrospinal fluid in diseases of the nervous system. Philadelphia: W.B. Saunders; 1980.

    Google Scholar 

  103. Quincke H. Diseases of the nervous system. New York: Appleton; 1909.

    Google Scholar 

  104. Merritt HH, Fremont-Smith F. The cerebrospinal fluid. Philadelphia: W.B. Saunders; 1938.

    Google Scholar 

  105. Sternbach G. Lumbar puncture. J Emerg Med. 1985;2(3):199–203.

    Article  CAS  PubMed  Google Scholar 

  106. Glantz MJ, Cole BF, Glantz LK, Cobb J, Mills P, Lekos A, et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer. 1998;82(4):733–9.

    Article  CAS  PubMed  Google Scholar 

  107. van Crevel H, Hijdra A, de Gans J. Lumbar puncture and the risk of herniation: when should we first perform CT? J Neurol. 2002;249(2):129–37.

    Article  PubMed  Google Scholar 

  108. Reihsaus E, Waldbaur H, Seeling W. Spinal epidural abscess: a meta-analysis of 915 patients. Neurosurg Rev. 2000;23(4):175–204; discussion 205.

    Google Scholar 

  109. van Veen JJ, Nokes TJ, Makris M. The risk of spinal haematoma following neuraxial anaesthesia or lumbar puncture in thrombocytopenic individuals. Br J Haematol. 2010;148(1):15–25.

    Article  PubMed  Google Scholar 

  110. Layton KF, Kallmes DF, Horlocker TT. Recommendations for anticoagulated patients undergoing image-guided spinal procedures. AJNR Am J Neuroradiol. 2006;27(3):468–70.

    PubMed  Google Scholar 

  111. Horlocker TT, Wedel DJ, Schroeder DR, et al. Preoperative antiplatelet therapy does not increase the risk of spinal hematoma associated with regional anesthesia. Anesth Analg. 1995;80(2):303–9.

    CAS  PubMed  Google Scholar 

  112. Whiteley W, Al-Shahi R, Warlow CP, Zeidler M, Lueck CJ. CSF opening pressure: reference interval and the effect of body mass index. Neurology. 2006;67(9):1690–1.

    Article  CAS  PubMed  Google Scholar 

  113. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54.

    Article  PubMed  Google Scholar 

  114. Tabouret E, Bauchet L, Carpentier AF. Brain metastases epidemiology and biology. Bull Cancer. 2013;100(1):57–62.

    PubMed  Google Scholar 

  115. Kesari S, Batchelor TT. Leptomeningeal metastases. Neurol Clin. 2003;21(1):25–66.

    Article  PubMed  Google Scholar 

  116. Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology. 2010;74(18):1449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saito R, Kumabe T, Jokura H, Shirane R, Yoshimoto T. Symptomatic spinal dissemination of malignant astrocytoma. J Neurooncol. 2003;61(3):227–35.

    Article  PubMed  Google Scholar 

  118. Kaplan JG, DeSouza TG, Farkash A, et al. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol. 1990;9(3):225–9.

    Article  CAS  PubMed  Google Scholar 

  119. Hauke RJ, Tarantolo SR, Bashir RM, Moravec D, Bierman PJ. Central nervous system Hodgkin’s disease relapsing with eosinophilic pleocytosis. Leuk Lymphoma. 1996;21(1–2):173–5.

    Article  CAS  PubMed  Google Scholar 

  120. Wasserstrom WR, Glass JP, Posner JB. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer. 1982;49(4):759–72.

    Article  CAS  PubMed  Google Scholar 

  121. Glass JP, Melamed M, Chernik NL, Posner JB. Malignant cells in cerebrospinal fluid (CSF): the meaning of a positive CSF cytology. Neurology. 1979;29(10):1369–75.

    Article  CAS  PubMed  Google Scholar 

  122. Glantz MJ, Cole BF, Glantz LK, et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer. 1998;82(4):733–9.

    Article  CAS  PubMed  Google Scholar 

  123. Balmaceda C, Gaynor JJ, Sun M, Gluck JT, DeAngelis LM. Leptomeningeal tumor in primary central nervous system lymphoma: recognition, significance, and implications. Ann Neurol. 1995;38(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  124. Nayak L, Fleisher M, Gonzalez-Espinoza R, Lin O, Panageas K, Reiner A, Liu C-M, DeAngelis LM, Omuro A. Rare cell capture technology for the diagnosis of leptomeningeal metastasis in solid tumors. Neuroology. 2013;80(17):1598–1605.

    Google Scholar 

  125. Shapiro HM. Practical flow cytometry. Hoboken: Wiley; 2005.

    Google Scholar 

  126. Chamberlain MC, Glantz M, Groves MD, Wilson WH. Diagnostic tools for neoplastic meningitis: detecting disease, identifying patient risk, and determining benefit of treatment. Semin Oncol. 2009;36(4 Suppl 2):S35–45.

    Article  PubMed  Google Scholar 

  127. Bromberg JE, Breems DA, Kraan J, et al. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology. 2007;68(20):1674–9.

    Article  CAS  PubMed  Google Scholar 

  128. Scott BJ, Douglas VC, Tihan T, Rubenstein JL, Josephson SA. A systematic approach to the diagnosis of suspected central nervous system lymphoma. JAMA Neurol. 2013;70(3):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hoon DS, Kuo CT, Wascher RA, Fournier P, Wang HJ, O’Day SJ. Molecular detection of metastatic melanoma cells in cerebrospinal fluid in melanoma patients. J Invest Dermatol. 2001;117(2):375–8.

    Article  CAS  PubMed  Google Scholar 

  130. Malkin MG, Posner JB. Cerebrospinal fluid tumor markers for the diagnosis and management of leptomeningeal metastases. Eur J Cancer Clin Oncol. 1987;23(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  131. Stockhammer G, Poewe W, Burgstaller S, et al. Vascular endothelial growth factor in CSF: a biological marker for carcinomatous meningitis. Neurology. 2000;54(8):1670–6.

    Article  CAS  PubMed  Google Scholar 

  132. van Zanten AP, Twijnstra A, Ongerboer de Visser BW, van Heerde P, Hart AA, Nooyen WJ. Cerebrospinal fluid tumour markers in patients treated for meningeal malignancy. J Neurol Neurosurg Psychiatry. 1991;54(2):119–23.

    Google Scholar 

  133. Castro MP, McDonald TJ, Qualman SJ, Odorisio TM. Cerebrospinal fluid gastrin releasing peptide in the diagnosis of leptomeningeal metastases from small cell carcinoma. Cancer. 2001;91(11):2122–6.

    Article  CAS  PubMed  Google Scholar 

  134. Fujimaki T, Mishima K, Asai A, et al. Levels of beta-human chorionic gonadotropin in cerebrospinal fluid of patients with malignant germ cell tumor can be used to detect early recurrence and monitor the response to treatment. Jpn J Clin Oncol. 2000;30(7):291–4.

    Article  CAS  PubMed  Google Scholar 

  135. Jorda M, Ganjei-Azar P, Nadji M. Cytologic characteristics of meningeal carcinomatosis: increased diagnostic accuracy using carcinoembryonic antigen and epithelial membrane antigen immunocytochemistry. Arch Neurol. 1998;55(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  136. Bernstein WB, Kemp JD, Kim GS, Johnson VV. Diagnosing leptomeningeal carcinomatosis with negative CSF cytology in advanced prostate cancer. J Clin Oncol. 2008;26(19):3281–4.

    Article  PubMed  Google Scholar 

  137. Cone LA, Koochek K, Henager HA, et al. Leptomeningeal carcinomatosis in a patient with metastatic prostate cancer: case report and literature review. Surg Neurol. 2006;65(4):372–75, discussion 375–76.

    Google Scholar 

  138. Kosmas C, Tsavaris NB, Soukouli G, et al. Changes of cerebrospinal fluid tumor marker levels may predict response to treatment and survival of carcinomatous meningitis in patients with advanced breast cancer. Med Oncol. 2005;22(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  139. Walbert T, Groves MD. Known and emerging biomarkers of leptomeningeal metastasis and its response to treatment. Future Oncol. 2010;6(2):287–97.

    Article  CAS  PubMed  Google Scholar 

  140. Gomes HR. Cerebrospinal fluid approach on neuro-oncology. Arq Neuropsiquiatr. 2013;71(9B):677–80.

    Article  PubMed  Google Scholar 

  141. van de Langerijt B, Gijtenbeek JM, de Reus HP, et al. CSF levels of growth factors and plasminogen activators in leptomeningeal metastases. Neurology. 2006;67(1):114–9.

    Article  PubMed  CAS  Google Scholar 

  142. Reijneveld JC, Brandsma D, Boogerd W, et al. CSF levels of angiogenesis-related proteins in patients with leptomeningeal metastases. Neurology. 2005;65(7):1120–2.

    Article  CAS  PubMed  Google Scholar 

  143. Friedberg MH, Glantz MJ, Klempner MS, Cole BF, Perides G. Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis. Cancer. 1998;82(5):923–30.

    Article  CAS  PubMed  Google Scholar 

  144. Katopodis N, Glantz MJ, Kim L, Dafni U, Wu JK, Perides G. Lipid-associated sialoprotein in the cerebrospinal fluid: association with brain malignancies. Cancer. 2001;92(4):856–62.

    Article  CAS  PubMed  Google Scholar 

  145. Groves MD, Hess KR, Puduvalli VK, et al. Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. J Neurooncol. 2009;94(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  146. Lossos IS, Breuer R, Intrator O, Lossos A. Cerebrospinal fluid lactate dehydrogenase isoenzyme analysis for the diagnosis of central nervous system involvement in hematooncologic patients. Cancer. 2000;88(7):1599–604.

    Article  CAS  PubMed  Google Scholar 

  147. Dalmau JO, Posner JB. Paraneoplastic syndromes. Arch Neurol. 1999;56(4):405–8.

    Article  CAS  PubMed  Google Scholar 

  148. Psimaras D, Carpentier AF, Rossi C, Euronetwork PNS. Cerebrospinal fluid study in paraneoplastic syndromes. J Neurol Neurosurg Psychiatry. 2010;81(1):42–5.

    Article  CAS  PubMed  Google Scholar 

  149. Tan K, Patel S, Gandhi N, Chow F, Rumbaugh J, Nath A. Burden of neuroinfectious diseases on the neurology service in a tertiary care center. Neurology. 2008;71(15):1160–6.

    Article  CAS  PubMed  Google Scholar 

  150. Pruitt AA. Central nervous system infections in cancer patients. Semin Neurol. 2010;30(3):296–310.

    Article  PubMed  Google Scholar 

  151. Safdieh JE, Mead PA, Sepkowitz KA, Kiehn TE, Abrey LE. Bacterial and fungal meningitis in patients with cancer. Neurology. 2008;70(12):943–7.

    Article  CAS  PubMed  Google Scholar 

  152. Pruitt AA. CNS infections in patients with cancer. Continuum (Minneap Minn). 2012;18(2):384–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward K. Avila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Janani, C.S., Avila, E.K. (2018). Other Diagnostic Tools for Neurological Disease in Cancer: EEG, EMG, and Lumbar Puncture. In: Schiff, D., Arrillaga, I., Wen, P. (eds) Cancer Neurology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-57901-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57901-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57899-6

  • Online ISBN: 978-3-319-57901-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics