Skip to main content

(S)PDE on Fractals and Gaussian Noise

  • Conference paper
  • First Online:
Recent Developments in Fractals and Related Fields (FARF3 2015)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 732 Accesses

Abstract

In the first part of this paper we give a survey on results from Hinz and Zähle (Potential Anal 36:483–515, 2012) and Issoglio and Zähle (Stoch PDE Anal Comput 3:372–389, 2015) for nonlinear parabolic (S)PDE on certain metric measure spaces of spectral dimensions less than 4 with applications to fractals. We consider existence, uniqueness, and fractional regularity properties of mild function solutions in the pathwise sense. In the second part we apply this to the special case of fractal Laplace operators as generators and Gaussian random noises.

Furthermore, we show that random space-time fields Y (t, x) like fractional Brownian sheets with Hurst exponents H in time and K in space on general Ahlfors regular compact metric measure spaces X possess a modification whose sample paths are elements of C α([0, t 0], C β(X)) for all α < H and β < K. This is used in the above special case of SPDE on fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [16] the w is missing in the exponent.

  2. 2.

    We remark that there is a typo in [16, Lemma 5.2], namely in (ii) and (iii) the right-hand side of the main condition on the parameters should read 2 − 2ηβ instead of \(2 - 2\eta - (\beta \vee \frac{d_{S}} {2} )\).

References

  1. Barlow, M.T.: Diffusions on Fractals. Lecture Notes in Mathematics, vol. 1690. Springer, New York (1998)

    Google Scholar 

  2. Barlow, M.T., Bass R.F.: Transition densities for Brownian motion on the Sierpinski carpet. Probab. Theor. Rel. Fields 91, 307–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barlow M.T., Bass R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 51, 673–744 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barlow, M.T., Bass, R.F., Kumagai, T., Teplyaev, A.: Uniqueness of Brownian motion on Sierpinski carpets. J. Eur. Math. Soc. 12, 655–701 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Barlow, M.T., Grigor’yan, A., Kumagai T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn. 64, 1091–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falconer K.J.: Semilinear PDEs on self-similar fractals. Commun. Math. Phys. 206, 235–245 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falconer, K., Hu, J.: Nonlinear diffusion equations on unbounded fractal domains. J. Math. Anal. Appl. 256(2), 606–624 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falconer, K., Hu, J., Sun, Y.: Inhomogeneous parabolic equations on unbounded metric measure spaces. Proc. R. Soc. Edinb. Sect. A 142(5), 1003–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fitzsimmons, P.J., Hambly, B.M., Kumagai, T.: Transition density estimates for Brownian motion on affine nested fractals. Commun. Math. Phys. 165, 595–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigor’yan, A., Kumagai, T.: On the dichotomy in the heat kernel two sided estimates. Proc. Symp. Pure Math. 77, 199–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)

    Article  MATH  Google Scholar 

  12. Grigor’yan A., Hu J., Lau K.-S.: Heat kernels on metric measure spaces. In: Geometry and Analysis on Fractals. Springer Proceedings in Mathematics and Statistics, vol. 88, pp. 147–208. Springer, Berlin (2014)

    Google Scholar 

  13. Hambly, B.M., Kumagai, T.: Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. Lond. Math. Soc. (3) 78, 431–458 (1999)

    Google Scholar 

  14. Hinz, M., Zähle, M.: Gradient type noises I - partial and hybrid integrals. Complex Var. Ell. Equ. 54, 561–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinz, M., Zähle, M.: Gradient type noises II - systems of stochastic partial differential equations. J. Funct. Anal. 256, 3192–3235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinz, M., Zähle, M.: Semigroups, potential spaces and applications to (S)PDE. Potential Anal. 36, 483–515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu J., Wang X.: Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals. Studia Math. 177, 153–172 (2006)

    Google Scholar 

  18. Hu J., Zähle M.: Generalized Bessel and Riesz potentials on metric measure spaces. Potential Anal. 30, 315–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Issoglio E., Zähle M.: Regularity of the solutions to SPDEs in metric measure spaces. Stoch. PDE Anal. Comput. 3, 372–389 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  21. Kigami, J.: Resistance forms, quasisymmetric maps and heat kernel estimates. Memoirs Am. Math. Soc. 216(1015) (2012). doi: http://dx.doi.org/10.1090/S0065-9266-2011-00632-5

  22. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Samko, S.G., Kilbas A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon (1993)

    MATH  Google Scholar 

  24. Strichartz, R.S.: Analysis on products of fractals. Trans. Am. Math. Soc. 357, 571–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  26. Zähle M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Theor. Relat. Fields 111, 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zähle M.: Integration with respect to fractal functions and stochastic calculus II. Math. Nachr. 225, 145–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Zähle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zähle, M. (2017). (S)PDE on Fractals and Gaussian Noise. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. FARF3 2015. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57805-7_13

Download citation

Publish with us

Policies and ethics