Skip to main content

Patient-Derived Mouse Models of Sarcoma

  • Chapter
  • First Online:
Patient-Derived Mouse Models of Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 682 Accesses

Abstract

The diversity and rarity of sarcomas has led to many challenges in the management of these malignancies. While local control can often be provided by surgical resection and radiation therapy, there is still a need for more effective systemic treatments in order to prevent distant recurrence and manage metastatic disease. Recent work has elucidated the underlying molecular biology in a handful of sarcoma subtypes, thereby providing avenues for targeted systemic therapy. Unfortunately, for the majority of sarcoma histological subtypes, systemic therapy continues to rely on traditional chemotherapy, often with toxic side effects. Patient-derived mouse models of sarcoma are paving the way for more personalized and targeted therapy that is both patient and tumor specific. Early trials in both subcutaneous and orthotopic models have begun to demonstrate the potential for translating xenograft findings to clinical care and represent an opportunity to personalize treatment for sarcoma patients and ultimately improve the outcomes of patients with these aggressive malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiroshima Y, Zhang Y, Zhang N, et al. Patient-derived orthotopic xenograft (PDOX) nude mouse model of soft-tissue sarcoma more closely mimics the patient behavior in contrast to the subcutaneous ectopic model. Anticancer Res. 2015;35:697–701.

    PubMed  Google Scholar 

  2. Sampson VB, Kamara DF, Kolb EA. Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing’s sarcoma: tumor models for cancer drug discovery. Expert Opin Drug Discov. 2013;8:1181–9. doi:10.1517/17460441.2013.817988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eilber FC, Brennan MF, Eilber FR, et al. Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer. 2004;101(10):2270–5.

    Article  PubMed  Google Scholar 

  4. Eilber FC, Kattan MW. Sarcoma nomogram: validation and a model to evaluate impact of therapy. J Am Coll Surg. 2007;205(Suppl 4):S90–5.

    Article  PubMed  Google Scholar 

  5. Antman K, Crowley J, Balcerzak SP, et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J Clin Oncol. 1993;11(7):1276–85.

    Article  CAS  PubMed  Google Scholar 

  6. Antman KH. Chemotherapy of advanced sarcomas of bone and soft tissue. Semin Oncol. 1992;19(6 Suppl 12):13–20.

    CAS  PubMed  Google Scholar 

  7. Antman KH, Ryan L, Elias A, Sherman D, et al. Response to ifosfamide and mesna: 124 previously treated patients with metastatic or unresectable sarcoma. J Clin Oncol. 1989;7(1):126–31.

    Article  CAS  PubMed  Google Scholar 

  8. Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15:415–23. doi:10.1016/S1470-2045(14)70063-4.

    Article  CAS  PubMed  Google Scholar 

  9. Eilber FC, Rosen G, Eckardt J, Forscher C, et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol. 2001;19(13):3203–9.

    Article  CAS  PubMed  Google Scholar 

  10. Frustaci S, Gherlinzoni F, De Paoli A, et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: results of the Italian randomized cooperative trial. J Clin Oncol. 2001;19(5):1238–47.

    Article  CAS  PubMed  Google Scholar 

  11. Grobmyer SR, Maki RG, Demetri GD, et al. Neo-adjuvant chemotherapy for primary high-grade extremity soft tissue sarcoma. Ann Oncol. 2004;15(11):1667–72.

    Article  CAS  PubMed  Google Scholar 

  12. Mullen JT, Kobayashi W, Wang JJ, Harmon DC. Long-term follow-up of patients treated with neoadjuvant chemotherapy and radiotherapy for large, extremity soft tissue sarcomas. Cancer. 2012;118(15):3758–65.

    Article  PubMed  Google Scholar 

  13. Donahue TR, Kattan MW, Nelson SD, et al. Evaluation of neoadjuvant therapy and histopathologic response in primary, high-grade retroperitoneal sarcomas using the sarcoma nomogram. Cancer. 2010;116:3883–91. doi:10.1002/cncr.25271.

    Article  PubMed  Google Scholar 

  14. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to ‘nude’ mice. Acta Pathol Microbiol Scand. 1969;77:758–60.

    Article  CAS  PubMed  Google Scholar 

  15. Kirsch DG, Dinulescu DM, Miller JB, et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007;13:992–7. doi:10.1038/nm1602.

    Article  CAS  PubMed  Google Scholar 

  16. Dodd RD, Añó L, Blum JM, et al. Methods to generate genetically engineered mouse models of soft tissue sarcoma. Methods Mol Biol. 2015;1267:283–95.

    Article  CAS  PubMed  Google Scholar 

  17. Puzio-Kuter AM, Laddha SV, Castillo-Martin M, et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ. 2015;22:1785–91. doi:10.1038/cdd.2015.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gregorian C, Nakashima J, Dry SM, et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc Natl Acad Sci U S A. 2009;106:19479–84. doi:10.1073/pnas.0910398106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minas TZ, Surdez D, Javaheri T, et al. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget. 2016. doi:10.18632/oncotarget.9388

  20. Houghton JA, Houghton PJ, Green AA. Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res. 1982;42:535–9.

    CAS  PubMed  Google Scholar 

  21. Izumchenko E, Meir J, Bedi A, et al. Patient-derived xenografts as tools in pharmaceutical development. Clin Pharmacol Ther. 2016;99:612–21. doi:10.1002/cpt.354.

    Article  CAS  PubMed  Google Scholar 

  22. Monsma DJ, Cherba DM, Richardson PJ, et al. Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance. Pediatr Blood Cancer. 2014;61:1570–7. doi:10.1002/pbc.25039.

    Article  CAS  PubMed  Google Scholar 

  23. Hooper JE, Cantor EL, Ehlen MS, et al. Research article: a patient-derived xenograft model of parameningeal embryonal rhabdomyosarcoma for preclinical studies. Sarcoma. 2015:1–7. doi:10.1155/2015/826124.

  24. Castellsagué J, Gel B, Rodríguez JF, et al. Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine. EMBO Mol Med. 2015;7:608–27. doi:10.15252/emmm.201404430.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Glaser G, Weroha SJ, Becker MA, et al. Conventional chemotherapy and oncogenic pathway targeting in ovarian carcinosarcoma using a patient-derived tumorgraft. PLoS One. 2015;10:e0126867–15. doi:10.1371/journal.pone.0126867.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Press JZ, Kenyon JA, Xue H, et al. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol. 2008;110:256–64.

    Article  CAS  PubMed  Google Scholar 

  27. Stebbing J, Paz K, Schwartz GK, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120:2006–15. doi:10.1002/cncr.28696.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hiroshima Y, Maawy A, Zhang Y, Zhang N, Murakami T, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget. 2016;7(44):71696–702.

    PubMed  PubMed Central  Google Scholar 

  29. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G. H. A. Clowes Memorial Award Lecture. Cancer Res. 1990;50:6130–8.

    CAS  PubMed  Google Scholar 

  30. Hoffman RM. Orthotopic is orthodox: why are orthotopic‑transplant metastatic models different from all other models? J Cell Biochem. 1994;56:1‑3.

    Google Scholar 

  31. Garber K. Realistic rodents? Debate grows over new mouse models of cancer. J Natl Cancer Inst. 2006;98:1176–8.

    Article  PubMed  Google Scholar 

  32. Fu X, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci U S A. 1991;88:9345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically from histologically intact patient specimens. Proc Natl Acad Sci U S A. 1992;89:5645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999;17:343–59.

    Article  CAS  PubMed  Google Scholar 

  35. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451–2.

    Article  CAS  PubMed  Google Scholar 

  36. Manzotti C, Audisio RA, Pratesi G. Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin Exp Metastasis. 1993;11:5–14. doi:10.1007/BF00880061.

    Article  CAS  PubMed  Google Scholar 

  37. Hiroshima Y, Zhang Y, Zhang N, et al. Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One. 2015;10:e0117417.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Fu X, Hoffman RM. A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer. 1992;51:992–5. doi:10.1002/ijc.2910510626.

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa T, Fu X, Kubota T, et al. Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res. 1993;53:1204–8.

    CAS  PubMed  Google Scholar 

  40. Furukawa T, Kubota T, Watanabe M, et al. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors. Int J Cancer. 1993;53:608–12. doi:10.1002/ijc.2910530414.

  41. Fu X, Le P, Hoffman RM. A metastatic-orthotopic transplant nude-mouse model of human patient breast cancer. Anticancer Res. 1993;13:901–4.

    Google Scholar 

  42. DeRose YS, Wang G, Lin Y-C, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    Google Scholar 

  43. Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 1993;13:287–91.

    Google Scholar 

  44. Astoul P, Wang X, Colt HG, Boutin C, Hoffman RM. A patient-like human malignant pleural mesothelioma nude-mouse model. Oncol Rep. 1996;3:483–7.

    CAS  PubMed  Google Scholar 

  45. Hiroshima Y, Maawy A, Metildi CA. Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system. J Laparoendosc Adv Surg Tech A. 2014;24:241–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shoji T, Konno H, Tanaka T, et al. Orthotopic implantation of a colon cancer xenograft induces high expression of cyclooxygenase-2. Cancer Lett. 2003;195(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  47. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013. doi:10.1158/2159-8290.CD-14-0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kubota T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem. 1994;56(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  49. Smith KB, Tran LM, Tam BM, et al. Novel dedifferentiated liposarcoma xenograft models reveal PTEN down-regulation as a malignant signature and response to PI3K pathway inhibition. Am J Pathol. 2013;182:1400–11. doi:10.1016/j.ajpath.2013.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murakami T, Singh AS, Kiyuna T, et al. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing’s sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget. 2016;7:47556–64. doi:10.18632/oncotarget.9879.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eckardt M, Russell TA, Murakami T, et al Factors impacting the establishment of individual soft tissue sarcoma patient-derived orthotopic xenograft (PDOX) mouse models: a UCLA Sarcoma Program Prospective Clinical Trial. Connective Tissue Oncology Society Annual Meeting, Lisbon, Portugal. 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz C. Eilber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Russell, T.A., Elliott, I.A., Singh, A.S., Eilber, F.C. (2017). Patient-Derived Mouse Models of Sarcoma. In: Hoffman, R. (eds) Patient-Derived Mouse Models of Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-57424-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57424-0_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-57423-3

  • Online ISBN: 978-3-319-57424-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics