Skip to main content

Microbial Life in Supraglacial Environments

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Supraglacial environments occupy 11% of Earth’s surface area and represent a critical interface between climate and ice. This century has brought a renewed appreciation that glacier surfaces represent a collective of diverse microbial niches which occur wherever sufficient liquid water is available to support microbial activity: even at the microscopic scales of ice crystal boundaries within the crystalline matrices of snow or glacial ice. Within this chapter, we review the range of microbial habitats associated with snowpacks, the glacial ice photic zone, and phototrophic microbial biofilms formed by supraglacial algae or by the darkening of microbe–mineral aggregates known as cryoconite. In summary, glacier surfaces are home to surprisingly biodiverse and active microbial communities despite their low temperatures and austere conditions. Consequently, microbial communities and their processes are interposed between climate and ice and merit urgent consideration in the light of the effects of climate warming on Earth’s supraglacial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot DS, Pierrehumbert RT (2010) Mudball: surface dust and snowball Earth deglaciation. J Geophys Res 115(D3):D03104. doi:10.1029/2009jd012007

    Article  CAS  Google Scholar 

  • Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort A-M (2007) Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiol Ecol 59(2):242–254. doi:10.1111/j.1574-6941.2006.00199.x

    Article  CAS  PubMed  Google Scholar 

  • Amoroso A, Domine F, Esposito G, Morin S, Savarino J, Nardino M, Montagnoli M, Bonneville JM, Clement JC, Ianniello A, Beine HJ (2009) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol 44(2):714–719. doi:10.1021/es9027309

    Article  CAS  Google Scholar 

  • Andrews TD, MacKay G (2012) The archaeology and paleoecology of alpine ice patches: a global perspective. Arctic 65(5):iii–ivi

    Google Scholar 

  • Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27(4):219–225

    Article  PubMed  Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Biol 15(4):955–960. doi:10.1111/j.1365-2486.2008.01758.x

    Article  Google Scholar 

  • Benn D, Evans DJ (2014) Glaciers and glaciation. Routledge, Abingdon

    Google Scholar 

  • Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci 104(33):13455–13460. doi:10.1073/pnas.0702196104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björkman MP, Zarsky JD, Kühnel R, Hodson A, Sattler B, Psenner R (2014) Microbial cell retention in a melting high Arctic snowpack, Svalbard. Arct Antarct Alp Res 46(2):471–482

    Article  Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7(11):2061–2068. doi:10.1038/ismej.2013.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd ES, Skidmore M, Mitchell AC, Bakermans C, Peters JW (2010) Methanogenesis in subglacial sediments. Environ Microbiol Rep 2(5):685–692. doi:10.1111/j.1758-2229.2010.00162.x

    Article  CAS  PubMed  Google Scholar 

  • Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M (2011) Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77(14):4778–4787. doi:10.1128/aem.00376-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SP, Olson BJ, Jumpponen A (2015) Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs? Arct Antarct Alp Res 47(4):729–749

    Article  Google Scholar 

  • Brown SP, Ungerer MC, Jumpponen A, Graham LE (2016) A community of clones: snow algae are diverse communities of spatially structured clones. Int J Plant Sci 177(5):432–439

    Article  Google Scholar 

  • Cameron K, Hodson AJ, Osborn AM (2012a) Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol 35(9):1375–1393. doi:10.1007/s00300-012-1178-3

    Article  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012b) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82:254–267. doi:10.1111/j.1574-6941.2011.01277.x

    Article  CAS  PubMed  Google Scholar 

  • Cameron KA, Hagedorn B, Dieser M, Christner BC, Choquette K, Sletten R, Crump B, Kellogg C, Junge K (2014) Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet. Environ Microbiol 17:594–609

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66(10):4514–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castello JD, Rogers SO (2005) Life in ancient ice. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Choudhari S, Smith S, Owens S, Gilbert JA, Shain DH, Dial RJ, Grigoriev A (2013) Metagenome sequencing of prokaryotic microbiota collected from Byron Glacier, Alaska. Genome Announc 1(2):e0009913. doi:10.1128/genomeA.00099-13

    Article  PubMed  Google Scholar 

  • Chrismas NAM, Anesio A, Sanchez-Baracaldo P (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 6:1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrismas NA, Barker G, Anesio AM, Sánchez-Baracaldo P (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genom 17(1):533

    Article  Google Scholar 

  • Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008) Ubiquity of biological ice nucleators in snowfall. Science 319(5867):1214. doi:10.1126/science.1149757

    Article  CAS  PubMed  Google Scholar 

  • Cook J, Hodson A, Telling J, Anesio A, Irvine-Fynn T, Bellas C (2010) The mass-area relationship within cryoconite holes and its implications for primary production. Ann Glaciol 51(56):106–110. doi:10.3189/172756411795932038

    Article  CAS  Google Scholar 

  • Cook JM, Hodson AJ, Anesio AM, Hanna E, Yallop M, Stibal M, Telling J, Huybrechts P (2012) An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J Glaciol 58(212):1098–1108

    Article  Google Scholar 

  • Cook J, Edwards A, Hubbard A (2015a) Biocryomorphology: integrating microbial processes with ice surface hydrology, topography and roughness. Front Earth Sci 3:78. doi:10.3389/feart.2015.00078

    Article  Google Scholar 

  • Cook JM, Hodson AJ, Irvine-Fynn TDL (2015b) Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol Process 30:433–443. doi:10.1002/hyp.10602

    Article  Google Scholar 

  • Cook J, Edwards A, Takeuchi N, Irvine-Fynn T (2016a) Cryoconite: the dark biological secret of the cryosphere. Prog Phys Geogr 40(1):66–111

    Article  Google Scholar 

  • Cook J, Edwards A, Bulling M, Mur L, Cook S, Gokul J, Cameron K, Sweet M, Irvine-Fynn T (2016b) Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environ Microbiol 18(12):4674–4686. doi:10.1111/1462-2920.13349

    Article  CAS  PubMed  Google Scholar 

  • Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes – evidence for a highly successful dispersal capacity. PLoS ONE 6(8):e23742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies TD, Brimblecombe P, Tranter M, Tsiouris S, Vincent CE, Abrahams P, Blackwood IL (1987) The removal of soluble ions from melting snowpacks. In: Jones HG, Orville-Thomas WJ (eds) Seasonal snowcovers: physics, chemistry, hydrology. Springer Netherlands, Dordrecht, pp 337–392. doi:10.1007/978-94-009-3947-9_20

    Chapter  Google Scholar 

  • Desmet WH, Vanrompus EA (1994) Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) Glacier. Belg J Zool 124(1):27–37

    Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160. doi:10.1038/ismej.2010.100

    Article  PubMed  Google Scholar 

  • Edwards A, Douglas B, Anesio AM, Rassner SM, Irvine-Fynn TDL, Sattler B, Griffith GW (2013a) A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fung Ecol 6(2):168–176. doi:10.1016/j.funeco.2012.11.001

    Article  Google Scholar 

  • Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson A, Irvine-Fynn TDL, Rassner SME, Sattler B (2013b) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 8(3):035003

    Article  Google Scholar 

  • Edwards A, Rassner SM, Anesio AM, Worgan H, Irvine-Fynn T, Williams HW, Sattler B, Griffith GW (2013c) Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Res 32:19468

    Article  Google Scholar 

  • Edwards A, Irvine-Fynn T, Mitchell AC, Rassner SME (2014a) A germ theory for glacial systems? Wiley Interdiscip Rev Water 1:331–340. doi:10.1002/wat2.1029

    Google Scholar 

  • Edwards A, Mur LAJ, Girdwood S, Anesio A, Stibal M, Rassner SM, Hell K, Pachebat JA, Post B, Bussell J, Cameron SJ, Griffith GW, Hodson AJ, Sattler B (2014b) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in Alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Xu J, Kang S, Li X, Li Y, Jiang B, Shi Q (2016) Chemical composition of microbe-derived dissolved organic matter in cryoconite in Tibetan Plateau glaciers: insights from Fourier transform ion cyclotron resonance mass spectrometry analysis. Environ Sci Technol 50(24):13215–13223

    Article  CAS  PubMed  Google Scholar 

  • Fettweis X, van Ypersele JP, Gallée H, Lefebre F, Lefebvre W (2007) The 1979–2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm. Geophys Res Lett 34(5):L05502

    Article  Google Scholar 

  • FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  CAS  Google Scholar 

  • Forster RR, Box JE, van den Broeke MR, Miege C, Burgess EW, van Angelen JH, Lenaerts JTM, Koenig LS, Paden J, Lewis C, Gogineni SP, Leuschen C, McConnell JR (2013) Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat Geosci 7:95–98

    Article  CAS  Google Scholar 

  • Franzetti A, Tatangelo V, Gandolfi I, Bertolini V, Bestetti G, Diolaiuti G, D’Agata C, Mihalcea C, Smiraglia C, Ambrosini R (2013) Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes. ISME J 7:1483–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzetti A, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Mayer C, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R (2016) Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME J 10:2984–2988

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman J, Steele J (2008) Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol 53(1):69–81. doi:10.3354/ame01222

    Article  Google Scholar 

  • Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TD, Westall PJ, Detheridge AP, Takeuchi N, Bussell J, Mur LA, Edwards A (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 25:3752–3767

    Article  PubMed  Google Scholar 

  • Gribbon PWF (1979) Cryoconite holes on Sermikavask, West Greenland. J Glaciol 22(86):177–181

    Article  Google Scholar 

  • Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in High Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77(10):3234–3243. doi:10.1128/aem.02611-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, Tedstone A, Nienow P, Lee K, Telling J (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun 5:3929. doi:10.1038/ncomms4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B (2013) The dynamic bacterial communities of a melting high Arctic glacier snowpack. ISME J 7(9):1814–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodson AJ (2014) Understanding the dynamics of black carbon and associated contaminants in glacial systems. Wiley Interdiscip Rev Water 1(2):141–149. doi:10.1002/wat2.1016

    Article  CAS  Google Scholar 

  • Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The high Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72(2):233–256. doi:10.1007/s10533-004-0362-0

    Article  CAS  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78(1):41–67

    Article  Google Scholar 

  • Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010) The structure, biogeochemistry and formation of cryoconite aggregates upon an Arctic valley glacier; Longyearbreen, Svalbard. J Glaciol 56(196):349–362

    Article  CAS  Google Scholar 

  • Hodson A, Paterson H, Westwood K, Cameron K, Laybourn-Parry J (2013) A blue-ice ecosystem on the margins of the East Antarctic ice sheet. J Glaciol 59(214):255–268

    Article  CAS  Google Scholar 

  • Hoffman PF (2016) Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? Geobiology 14(6):531–542. doi:10.1111/gbi.12191

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281(5381):1342–1346. doi:10.1126/science.281.5381.1342

    Article  CAS  PubMed  Google Scholar 

  • Hood E, Fellman J, Spencer RG, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462(7276):1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM (2015) Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci 8(2):91–96. doi:10.1038/ngeo2331

    Article  CAS  Google Scholar 

  • Hubbard B, Glasser NF (2005) Field techniques in glaciology and glacial geomorphology. Wiley, Chichester

    Google Scholar 

  • Irvine-Fynn TDL, Edwards A (2013) A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A 85(1):3–7. doi:10.1002/cyto.a.22411

    Article  PubMed  Google Scholar 

  • Irvine-Fynn TDL, Bridge JW, Hodson AJ (2011a) In situ quantification of supraglacial cryoconite morpho-dynamics using time-lapse imaging: an example from Svalbard. J Glaciol 57:651–657

    Article  Google Scholar 

  • Irvine-Fynn TDL, Hodson AJ, Moorman BJ, Vatne G, Hubbard AL (2011b) Polythermal glacier hydrology: a review. Rev Geophys 49(4):RG4002. doi:10.1029/2010rg000350

    Article  Google Scholar 

  • Irvine-Fynn TDL, Edwards A, Newton S, Langford H, Rassner SM, Telling J, Anesio AM, Hodson AJ (2012) Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ Microbiol 14(11):2998–3012. doi:10.1111/j.1462-2920.2012.02876.x

    Article  CAS  PubMed  Google Scholar 

  • Irvine-Fynn TD, Sanz-Ablanedo E, Rutter N, Smith MW, Chandler JH (2014) Measuring glacier surface roughness using plot-scale, close-range digital photogrammetry. J Glaciol 60(223):957–969

    Article  Google Scholar 

  • Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735–738. doi:10.1126/science.1249055

    Article  CAS  PubMed  Google Scholar 

  • Kol E (1942) The snow and ice algae of Alaska. Smithsonian Miscellaneous Collections 101:1–36

    Google Scholar 

  • Kuhn M (2001) The nutrient cycle through snow and ice, a review. Aquat Sci 63(2):150–167

    Article  CAS  Google Scholar 

  • Langford H, Hodson A, Banwart S, Bøggild C (2010) The microstructure and biogeochemistry of Arctic cryoconite granules. Ann Glaciol 51(56):87–94

    Article  CAS  Google Scholar 

  • Langford HJ, Irvine-Fynn TDL, Edwards A, Banwart SA, Hodson AJ (2014) A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences 11(19):5365–5380. doi:10.5194/bg-11-5365-2014

    Article  Google Scholar 

  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel T (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14(2):205–212. doi:10.1007/s00792-009-0299-2

    Article  PubMed  Google Scholar 

  • Larose C, Dommergue A, Vogel TM (2013) The dynamic arctic snow pack: an unexplored environment for microbial diversity and activity. Biology 2(1):317–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson EC, Wadham JL, Tranter M, Stibal M, Lis GP, Butler CE, Laybourn-Parry J, Nienow P, Chandler D, Dewsbury P (2014) Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11(14):4015–4028

    Article  Google Scholar 

  • Lazzaro A, Wismer A, Schneebeli M, Erny I, Zeyer J (2015) Microbial abundance and community structure in a melting alpine snowpack. Extremophiles 19(3):631–642

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Priscu JC, Yao T, Vick-Majors TJ, Xu B, Jiao N, Santibáñez P, Huang S, Wang N, Greenwood M (2016) Bacterial responses to environmental change on the Tibetan Plateau over the past half century. Environ Microbiol 18(6):1930–1941

    Article  PubMed  Google Scholar 

  • Lopatina A, Krylenkov V, Severinov K (2013) Activity and bacterial diversity of snow around Russian Antarctic stations. Res Microbiol 164(9):949–958

    Article  PubMed  Google Scholar 

  • Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K (2016) Metagenomic analysis of bacterial communities of Antarctic surface snow. Front Microbiol 7:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz S, Anesio AM, Villar SEJ, Benning LG (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 89(2):402–414

    Article  CAS  PubMed  Google Scholar 

  • Lutz S, Anesio AM, Edwards A, Benning LG (2015) Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 6:307

    PubMed  PubMed Central  Google Scholar 

  • Lutz S, Anesio AM, Edwards A, Benning LG (2016a) Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol. doi:10.1111/1462-2920.13494

    Google Scholar 

  • Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG (2016b) The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun 7:11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccario L, Vogel TM, Larose C (2014) Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 5:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34(3):169–172. doi:10.1130/G22096.1

    Article  CAS  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The Genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74(20):6405–6416. doi:10.1128/aem.00197-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee D, Broecker WS, Winckler G (2010) Gustiness: the driver of glacial dustiness? Quat Sci Rev 29(17–18):2340–2350

    Article  Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(5841):1064–1067

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Keeler CM (1969) Errors in short-term ablation measurements on melting ice surfaces. J Glaciol 8(52):91–105

    Article  Google Scholar 

  • Nagatsuka N, Takeuchi N, Nakano T, Shin K, Kokado E (2014) Geographical variations in Sr and Nd isotopic ratios of cryoconite on Asian glaciers. Environ Res Lett 9(4):045007

    Article  CAS  Google Scholar 

  • Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR, Keegan K, Shuman CA, DiGirolamo NE, Neumann G (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett 39:L20502. doi:10.1029/2012gl053611

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros V, Broome J, Cramer W, Christ R, Church J, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102(4):992–999. doi:10.1111/j.1365-2672.2006.03155.x

    CAS  PubMed  Google Scholar 

  • Paterson W (1994) The Physics of Glaciers. Butterworth-Heinemann, Burlington, MA

    Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69(2):143–157. doi:10.1111/j.1574-6941.2009.00706.x

    Article  CAS  PubMed  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  CAS  Google Scholar 

  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radic V, Rastner P, Raup BH, Rich J, Sharp MJ, Consortium R (2014) The Randolph glacier inventory (2014): a globally complete inventory of glaciers. J Glaciol 60:221. doi:10.3189/2014JoG13J176

    Article  Google Scholar 

  • Ransom-Jones E, Jones DL, Edwards A, McDonald JE (2014) Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 37(7):502–509

    Article  CAS  PubMed  Google Scholar 

  • Rassner SME, Anesio A, Girdwood SE, Hell K, Gokul J, Whitworth DE, Edwards A (2016) Can the bacterial community of a high Arctic glacier surface escape viral control? Front Microbiol 7:956

    Article  PubMed  PubMed Central  Google Scholar 

  • Remias D (2012) Cell structure and physiology of alpine snow and ice algae. In: Lütz C (ed) Plants in Alpine regions. Springer, New York, NY, pp 175–185

    Chapter  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268

    Article  CAS  Google Scholar 

  • Remias D, Holzinger A, Lütz C (2009) Ultrastructure and physiological characterization of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European alps. Phycologia 48:302–312

    Article  Google Scholar 

  • Remias D, Holzinger A, Aigner S, Lütz C (2012a) Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol 35(6):899–908

    Article  Google Scholar 

  • Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2012b) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79(3):638–648

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686. doi:10.1128/aem.02000-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde RA, Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc Natl Acad Sci 104(42):16592–16597. doi:10.1073/pnas.0708183104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28(2):239–242. doi:10.1029/2000gl011684

    Article  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25(8):591–596. doi:10.1007/s00300-002-0388-5

    Google Scholar 

  • Segawa T, Ishii S, Ohte N, Akiyoshi A, Yamada A, Maruyama F, Li Z, Hongoh Y, Takeuchi N (2014) The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ Microbiol 16(10):3250–3262. doi:10.1111/1462-2920.12543

    Article  CAS  PubMed  Google Scholar 

  • Shiklomanov I (1993) World freshwater resources. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, NY, pp 13–14

    Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526. doi:10.1128/aem.00946-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer GA, Fasching C, Wilhelm L, Niggemann J, Steier P, Dittmar T, Battin TJ (2012) Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat Geosci 5(10):710–714

    Article  CAS  Google Scholar 

  • Smith HJ, Schmit A, Foster R, Littman S, Kuypers MM, Foreman CM (2016) Biofilms on glacial surfaces: hotspots for biological activity. NPJ Biofilms Microbiomes 2:16008

    Article  Google Scholar 

  • Spijkerman E, Wacker A, Weithoff G, Leya T (2012) Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol 3:380

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanish LF, Bagshaw EA, McKnight DM, Fountain AG, Tranter M (2013) Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ Res Lett 8(4):045006

    Article  Google Scholar 

  • Stibal M, Sabacka M, Kastovska K (2006) Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52(4):644–654. doi:10.1007/s00248-006-9083-3

    Article  PubMed  Google Scholar 

  • Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-Fynn TD (2015a) Microbial abundance in surface ice on the Greenland Ice Sheet. Front Microbiol 6:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS (2015b) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7(2):293–300

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorency and the property of organic matter contained in the cryoconite. Ann Glaciol 34:409–414

    Article  CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Goto-Azuma K, Koerner R (2001a) Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Memoirs of the National Institute of Polar Research 54:495–505

    Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001b) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33(2):115–122

    Article  Google Scholar 

  • Tedesco M, Doherty S, Fettweis X, Alexander P, Jeyaratnam J, Noble E, Stroeve J (2016) The darkening of the Greenland ice sheet: trends, drivers and projections (1981–2100). Cryosphere 10:477–496

    Article  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res-Biogeosci 116:G03039. doi:10.1029/2010jg001632

    Article  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Stibal M, Hawkings J, Irvine-Fynn T, Hodson A, Butler C, Yallop M, Wadham J (2012a) Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. J Geophys Res 117(G1):G01017. doi:10.1029/2011jg001828

    Article  CAS  Google Scholar 

  • Telling J, Stibal M, Anesio AM, Tranter M, Nias I, Cook J, Lis G, Wadham JL, Sole A, Nienow P, Hodson A (2012b) Microbial nitrogen cycling on the Greenland ice sheet. Biogeosci Discuss 9:2431–2442. doi:10.5194/bgd-8-10423-2011

    Article  CAS  Google Scholar 

  • Temkiv TŠ, Finster K, Hansen BM, Nielsen NW, Karlson UG (2011) The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol Ecol 81(3):684–695. doi:10.1111/j.1574-6941.2012.01402.x

    Article  CAS  Google Scholar 

  • Temkiv TŠ, Finster K, Hansen BM, Pašić L, Karlson UG (2013) Viable methanotrophic bacteria enriched from air and rain can oxidize methane at cloud-like conditions. Aerobiologia 29(3):373–384. doi:10.1007/s10453-013-9287-1

    Article  Google Scholar 

  • Tranter M, Fountain AG, Fritsen CH, Berry Lyons W, Priscu JC, Statham PJ, Welch KA (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Process 18(2):379–387. doi:10.1002/hyp.5217

    Article  Google Scholar 

  • Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4(1):71–80

    Article  Google Scholar 

  • Uetake J, Tanaka S, Hara K, Tanabe Y, Samyn D, Motoyama H, Imura S, Kohshima S (2014) Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS ONE 9(11):e112510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Leewenhoeck A (1677) Observations, Communicated to the Publisher by Mr. Antony van Leewenhoeck, in a Dutch Letter of the 9th of Octob. 1676. Here English'd: concerning little animals by him observed in rain-well-sea and snow water; as also in water wherein pepper had lain infused. Phil Trans 12(133–142):821–831. doi:10.1098/rstl.1677.0003

    Article  Google Scholar 

  • Vonnahme T, Devetter M, Žárský J, Šabacká M, Elster J (2015) Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard. Biogeosci Discuss 12:11751–11795

    Article  Google Scholar 

  • Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler CEH (2012) Potential methane reservoirs beneath Antarctica. Nature 488(7413):633–637

    Article  CAS  PubMed  Google Scholar 

  • Warren SG, Hudson SR (2003) Bacterial activity in South Pole snow is questionable. Appl Environ Microbiol 69(10):6340–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren SG, Brandt RE, Grenfell TC (2006) Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl Optics 45(21):5320–5334

    Article  CAS  Google Scholar 

  • Weiss RL (1983) Fine Structure of the snow algae (Chlamydamonas nivalis) and associated bacteria. J Phycol 19(2):200–204

    Article  Google Scholar 

  • Wharton RA, Mckay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35(8):499–503

    Article  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K (2013) Microbial biodiversity in glacier-fed streams. ISME J 7:1651–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm L, Besemer K, Fasching C, Urich T, Singer GA, Quince C, Battin TJ (2014) Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ Microbiol 16(8):2514–2524. doi:10.1111/1462-2920.12392

    Article  CAS  PubMed  Google Scholar 

  • Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci 96:8017–8021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlin T, Ferrari B, Power M (2016) Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 92(9):fivq32

    Article  Google Scholar 

  • Wynn PM, Hodson AJ, Heaton TH, Chenery S (2007) Nitrate production beneath a High Arctic glacier, Svalbard. Chem Geol 244(1):88–102

    Article  CAS  Google Scholar 

  • Xiang S-R, Shang T-C, Chen Y, Yao T-D (2009) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70(2):165–176. doi:10.1111/j.1574-6941.2009.00759.x

    Article  CAS  Google Scholar 

  • Yallop M, Anesio A (2010) Benthic diatom flora in supraglacial habitats: a generic-level comparison. Ann Glaciol 51(56):15–22

    Article  Google Scholar 

  • Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J, Fagan D, MacFarlane J, Stibal M, Barker G, Bellas C, Hodson A, Tranter M, Wadham J, Roberts NW (2012) Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J 6:2302–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura Y, Kohshima S, Ohtani S (1997) A community of snow algae on Himalayan glacier: change of algal biomass and community structure with altitude. Arct Alp Res 29(1):126–137. doi:10.2307/1551843

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arwyn Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edwards, A., Cameron, K.A. (2017). Microbial Life in Supraglacial Environments. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_4

Download citation

Publish with us

Policies and ethics