Skip to main content

Polymer- and Carbon-Based Nanofibres for Energy Storage

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

  • 2323 Accesses

Abstract

There is ever-increasing demand for energy worldwide. The constant use of energy particularly in portable devices and vehicles has required highly efficient and high-capacity energy storage. Materials research is at the front of addressing the society’s demand for energy storage. This chapter focuses on the fabrication and use of polymer and carbon-based nanofibers for energy storage. The widely used fabrication methods such as chemical vapour deposition, electrospinning and the recently developed methods including controlled freezing and gelation for nanofibers have been described. Upon the preparation of polymer nanofibers, carbon nanofibers can be produced by pyrolysis under inert atmosphere. We then review the applications of carbon-based nanofibers in different types of rechargeable batteries and supercapacitors. The chapter is completed with conclusion and outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Denholm P, Ela E, Kirby B et al (2010) The role of energy storage with renewable electricity generation (Technical Report). National Renewable Energy Laboratory, Golden, pp 1–61

    Book  Google Scholar 

  2. Adeniran B, Mokaya R (2015) Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity. J Mater Chem A 3(9):5148–5161

    Article  Google Scholar 

  3. Cao D, Zhang X, Chen J et al (2003) Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J Phys Chem B 107(48):13286–13292

    Article  Google Scholar 

  4. Ahrens M, Kucera L, Larsonneur R (1996) Performance of a magnetically suspended flywheel energy storage device. IEEE T Contr Syst T 4(5):494–502

    Article  Google Scholar 

  5. Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sus Energy Rev 11(2):235–258

    Article  Google Scholar 

  6. Cha SI, Kim KT, Arshad SN et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381

    Article  Google Scholar 

  7. Nayfeh TH (2010) High strength composite materials and related processes. US Patent Application 20100203351 A1

    Google Scholar 

  8. Winter M, Besenhard JO, Spahr ME et al (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763

    Article  Google Scholar 

  9. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  10. Notten P, Bergveld H, Kruijt W (2002) Battery management systems: design by modeling. Kluwer Academic Publisher, Norwell

    Google Scholar 

  11. Skotheim TA (ed) (1997) Handbook of conducting polymers. CRC Press, Baco Raton

    Google Scholar 

  12. Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 97–98:812–815

    Article  Google Scholar 

  13. Namisnyk AM (2003) A survey of electrochemical supercapacitor technology. University of Technology, Sydney

    Google Scholar 

  14. Buckles W, Hassenzahl WV (2000) Superconducting magnetic energy storage. IEEE Power Eng Rev 20(5):16–20

    Article  Google Scholar 

  15. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  Google Scholar 

  16. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342

    Article  Google Scholar 

  17. Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Article  Google Scholar 

  18. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945

    Article  Google Scholar 

  19. Shokrieh MM, Esmkhani M, Haghighatkhah AR (2014) Flexural fatigue behaviour of carbon nanofiber/epoxy nanocomposites. Fatigue Fract Eng M 37(5):553–560

    Article  Google Scholar 

  20. Cao J, Wang Y, Zhou Y et al (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206

    Article  Google Scholar 

  21. Fan Z, Yan J, Wei T et al (2011) Asymmetric Supercapacitors Based on Graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375

    Article  Google Scholar 

  22. Liu X, Roberts A, Ahmed A et al (2015) Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J Mater Chem A 3(30):15513–15522

    Article  Google Scholar 

  23. Śliwak A, Gryglewicz G (2014) High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes. Energy Technol 2(9–10):819–824

    Article  Google Scholar 

  24. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510

    Article  Google Scholar 

  25. Zhang L, Aboagye A, Kelkar A et al (2013) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49(2):463–480

    Article  Google Scholar 

  26. Li W, Zhang F, Dou Y et al (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1(3):382–386

    Article  Google Scholar 

  27. Roberts AD, Wang S, Li X et al (2014) Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A 2(42):17787–17796

    Article  Google Scholar 

  28. Xu G, Han J, Ding B et al (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674

    Article  Google Scholar 

  29. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  Google Scholar 

  30. Hughes TYC, Chambers CR (1889) Manufacture of Carbon Filaments. US Patent 405480

    Google Scholar 

  31. Radushkevich LV, Lukyanovich VM (1952) O Strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Russ J Phys Chem 26:88–95

    Google Scholar 

  32. Kroto HW, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  33. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  34. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  35. Bethune DS, Johnson RD, Salem JR et al (1993) Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366(6451):123–128

    Article  Google Scholar 

  36. Baker RTK, Harris PS, Thomas RB et al (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30(1):86–95

    Article  Google Scholar 

  37. Baker RTK, Barber MA, Harris PS et al (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62

    Article  Google Scholar 

  38. Melechko AV, Merkulov VI, McKnight TE et al (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301

    Article  Google Scholar 

  39. Faccini M, Borja G, Boerrigter M et al (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:1–9

    Article  Google Scholar 

  40. Aravindan V, Sundaramurthy J, Suresh Kumar P et al (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234

    Article  Google Scholar 

  41. Lee BS, Yang HS, Yu WR (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602

    Article  Google Scholar 

  42. Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60

    Article  Google Scholar 

  43. Samitsu S, Zhang R, Peng X et al (2013) Flash freezing route to mesoporous polymer nanofibre networks. Nat Commun 4:2653

    Article  Google Scholar 

  44. Liu X, Ahmed A, Wang Z et al (2015) Nanofibrous microspheres via emulsion gelation and carbonization. Chem Commun 51(94):16864–16867

    Article  Google Scholar 

  45. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    Article  Google Scholar 

  46. Wan Y, Yang Z, Xiong G et al (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419

    Article  Google Scholar 

  47. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  Google Scholar 

  48. Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1975504A

    Google Scholar 

  49. Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12):123111

    Article  Google Scholar 

  50. Li Z, Wang C (2013) Effects of working parameters on electrospinning. One-dimensional nanostructures. Springer, Berlin Heidelberg, pp 15–28

    Google Scholar 

  51. Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  Google Scholar 

  52. Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):09955–09967

    Article  Google Scholar 

  53. Deitzel JM, Kleinmeyer J, Harris D et al (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

    Article  Google Scholar 

  54. Qin X-H, Yang E-L, Li N et al (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103(6):3865–3870

    Article  Google Scholar 

  55. McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437

    Article  Google Scholar 

  56. Xiong X, Luo W, Hu X et al (2015) Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 5:9254

    Article  Google Scholar 

  57. Zhi M, Manivannan A, Meng F et al (2012) Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J Power Sources 208:345–353

    Article  Google Scholar 

  58. Liu H, Bai JIE, Wang QI et al (2014) Preparation and characterization of silver nanoparticles/carbon nanofibers via electrospinning with research on their catalytic properties. NANO 09(03):1450041

    Article  Google Scholar 

  59. Savva I, Kalogirou AS, Chatzinicolaou A et al (2014) PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv 4(85):44911–44921

    Article  Google Scholar 

  60. Wang S-X, Yap CC, He J et al (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73

    Google Scholar 

  61. Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785

    Article  Google Scholar 

  62. Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17(13):1390–1401

    Article  Google Scholar 

  63. Kim B-H, Bui N-N, Yang K-S et al (2009) Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. B Kor Chem Soc 30(9):1967–1972

    Article  Google Scholar 

  64. Qiu Y, Yu J, Shi T et al (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196(23):9862–9867

    Article  Google Scholar 

  65. Hwang TH, Lee YM, Kong B-S et al (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12(2):802–807

    Article  Google Scholar 

  66. Kong J, Tan HR, Tan SY et al (2010) A generic approach for preparing core-shell carbon-metal oxide nanofibers: morphological evolution and its mechanism. Chem Commun 46(46):8773–8775

    Article  Google Scholar 

  67. Kong J, Liu Z, Yang Z et al (2012) Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale 4(2):525–530

    Article  Google Scholar 

  68. Park S-H, Kim B-K, Lee W-J (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127

    Article  Google Scholar 

  69. Yu Y, Gu L, Wang C et al (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48(35):6485–6489

    Article  Google Scholar 

  70. Wang H, Zhang C, Chen Z et al (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81:782–787

    Article  Google Scholar 

  71. Wang S-X, Yang L, Stubbs LP et al (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(23):12275–12282

    Article  Google Scholar 

  72. Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20(3):634–648

    Article  Google Scholar 

  73. Qian L, Zhang H (2011) Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol 86(2):172–184

    Article  Google Scholar 

  74. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533

    Article  Google Scholar 

  75. Zhang H, Hussain I, Brust M et al (2005) Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater 4(10):787–793

    Article  Google Scholar 

  76. Wais U, Jackson AW, He T et al (2016) Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 8(4):1746–1769

    Article  Google Scholar 

  77. Qian L, Ahmed A, Foster A et al (2009) Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J Mater Chem 19(29):5212–5219

    Article  Google Scholar 

  78. Zhang H, Wang D, Butler R et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3(8):506–511

    Article  Google Scholar 

  79. Qian L, Willneff E, Zhang H (2009) A novel route to polymeric sub-micron fibers and their use as templates for inorganic structures. Chem Commun 26:3946–3948

    Article  Google Scholar 

  80. Qian L, Zhang H (2010) Green synthesis of chitosan-based nanofibers and their applications. Green Chem 12(7):1207–1214

    Article  Google Scholar 

  81. Ahmed A, Hearn J, Abdelmagid W et al (2012) Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. J Mater Chem 22(48):25027–25035

    Article  Google Scholar 

  82. Zhang H, Lee JY, Ahmed A et al (2008) Freeze-align and heat-fuse: microwires and networks from nanoparticle suspensions. Angew Chem Int Ed 47(24):4573–4576

    Article  Google Scholar 

  83. Shi Q, An Z, Tsung CK et al (2007) Ice-templating of core/shell microgel fibers through ‘bricks-and-mortar’ assembly. Adv Mater 19(24):4539–4543

    Article  Google Scholar 

  84. Shi Q, Liang H, Feng D et al (2008) Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface. J Am Chem Soc 130(15):5034–5035

    Article  Google Scholar 

  85. Mao Q, Shi S, Wang H (2015) Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers. ACS Sustain Chem Eng 3(9):1915–1924

    Article  Google Scholar 

  86. Spender J, Demers AL, Xie X et al (2012) Method for production of polymer and carbon nanofibers from water-soluble polymers. Nano Lett 12(7):3857–3860

    Article  Google Scholar 

  87. Sweetman LJ, Moulton SE, Wallace GG (2008) Characterisation of porous freeze dried conducting carbon nanotube-chitosan scaffolds. J Mater Chem 18(44):5417–5422

    Article  Google Scholar 

  88. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  89. Yamamoto T, Nishimura T, Suzuki T et al (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288(1–3):46–55

    Article  Google Scholar 

  90. Qie L, Chen W-M, Wang Z-H et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  Google Scholar 

  91. Cho JS, Hong YJ, Kang YC (2015) Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-Ion batteries. ACS Nano 9(4):4026–4035

    Article  Google Scholar 

  92. Song MJ, Kim IT, Kim YB et al (2015) Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim Acta 182:289–296

    Article  Google Scholar 

  93. Nie H, Xu C, Zhou W et al (2016) Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries. ACS Appl Mater Interfaces 8(3):1937–1942

    Article  Google Scholar 

  94. Singhal R, Chung S-H, Manthiram A et al (2015) A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 3(8):4530–4538

    Article  Google Scholar 

  95. Bai Y, Wang Z, Wu C et al (2015) Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 7(9):5598–5604

    Article  Google Scholar 

  96. Xu G, Ding B, Pan J et al (2015) Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J Mater Chem A 3(46):23268–23273

    Article  Google Scholar 

  97. Abouali S, Akbari Garakani M, Zhang B et al (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511

    Article  Google Scholar 

  98. Li L, Peng S, Wu HB et al (2015) A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv Energy Mater 5(17):1500753

    Google Scholar 

  99. Li M, Liu F, Cheng JP et al (2015) Enhanced performance of nickel-aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor. J Alloys Comp 635:225–232

    Article  Google Scholar 

  100. Dan P, Mengeritski E, Geronov Y et al (1995) Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell. J Power Sources 54(1):143–145

    Article  Google Scholar 

  101. Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  Google Scholar 

  102. Gabano J-P (1983) Lithium batteries. Academic Press, London

    Google Scholar 

  103. Nazri G-A, Pistoia G (2008) Lithium batteries: science and technology. Springer Science & Business Media, Germany

    Google Scholar 

  104. Wu Y, Wang J, Jiang K et al (2013) Applications of carbon nanotubes in high performance lithium ion batteries. Front Phys 9(3):351–369

    Article  Google Scholar 

  105. Christensen J, Albertus P, Sanchez-Carrera RS et al (2011) A critical review of li/air batteries. J Electrochem Soc 159(2):R1–R30

    Article  Google Scholar 

  106. Peng B, Chen J (2009) Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coordin Chem Rev 253(23–24):2805–2813

    Article  Google Scholar 

  107. Ma Z, Yuan X, Li L et al (2015) A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 8(8):2144–2198

    Article  Google Scholar 

  108. Yuan J, Yu J-S, Sundén B (2015) Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J Power Sources 278:352–369

    Article  Google Scholar 

  109. Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  Google Scholar 

  110. Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  Google Scholar 

  111. Ye H, Yin Y-X, Xin S et al (2013) Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries. J Mater Chem A 1(22):6602–6608

    Article  Google Scholar 

  112. Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv Mater 26(9):1360–1365

    Article  Google Scholar 

  113. Zhang Z, Wang G, Lai Y et al (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. J Power Sources 300:157–163

    Article  Google Scholar 

  114. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    Article  Google Scholar 

  115. Zheng G, Zhang Q, Cha JJ et al (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3):1265–1270

    Article  Google Scholar 

  116. Zheng G, Yang Y, Cha JJ et al (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467

    Article  Google Scholar 

  117. Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  Google Scholar 

  118. Ong SP, Chevrier VL, Hautier G et al (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688

    Article  Google Scholar 

  119. Zhou Z, Gao X, Yan J et al (2004) A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12–13):2677–2682

    Article  Google Scholar 

  120. Wang Z, Qie L, Yuan L et al (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334

    Article  Google Scholar 

  121. Becker HI (1957) Low voltage electrolytic capacitor. US Patent 2800616A

    Google Scholar 

  122. Vangari Manisha, Pryor Tonya, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79

    Article  Google Scholar 

  123. Lu Y, Fu K, Zhang S et al (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510

    Article  Google Scholar 

  124. Choi N-S, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024

    Article  Google Scholar 

  125. Huang C-W, Hsu C-H, Kuo P-L et al (2011) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49(3):895–903

    Article  Google Scholar 

  126. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518

    Article  Google Scholar 

  127. Largeot C, Portet C, Chmiola J et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731

    Article  Google Scholar 

  128. Veerasamy VS, Yuan J, Amaratunga GAJ et al (1993) Nitrogen doping of highly tetrahedral amorphous carbon. Phys Rev B 48(24):17954–17959

    Article  Google Scholar 

  129. Wang C, Zhou Y, Sun L et al (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88

    Article  Google Scholar 

  130. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131(14):5026–5027

    Article  Google Scholar 

  131. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14

    Article  Google Scholar 

  132. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  Google Scholar 

  133. Wu Z-Y, Xu X-X, Hu B-C et al (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew Chem Int Ed 54(28):8179–8183

    Article  Google Scholar 

  134. Chen W, Rakhi RB, Hu L et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172

    Article  Google Scholar 

  135. Wang J-G, Yang Y, Huang Z-H et al (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  Google Scholar 

  136. Zhang Y, Feng H, Wu X et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899

    Article  Google Scholar 

  137. Wang H, Yoshio M, Thapa AK et al (2007) From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. J Power Sources 169(2):375–380

    Article  Google Scholar 

  138. Dubal DP, Ayyad O, Ruiz V et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    Article  Google Scholar 

Download references

Acknowledgements

AH is grateful for the University of Liverpool and the A*Star Research Attachment Programme (ARAP) to fund the joint PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Li or Haifei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ho, A., Wang, S., Li, X., Zhang, H. (2017). Polymer- and Carbon-Based Nanofibres for Energy Storage. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_7

Download citation

Publish with us

Policies and ethics