Skip to main content

Design and Control of Nanostructures and Interfaces for Excitonic Solar Cells

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

  • 2330 Accesses

Abstract

Excitonic solar cells (ESCs) including dye-sensitized solar cells, quantum dot-sensitized solar cells, perovskites solar cells, and inverted organic photovoltaics are built upon metal oxide semiconductors (MOSs), which have attracted considerable attention recently and showed a promising development for the next generation solar cells. The development of nanotechnology has created various MOS nanostructures to open up new perspectives for their exploitation, significantly improving the performances of ESCs. One of the outstanding advantages is that the nanostructured mesoporous MOSs offer large specific surface area for loading a large number of active materials (dyes, quantum dots, or perovskites) so as to capture a sufficient fraction of photons as well as to facilitate efficient charge transfer. This review focuses on the recent work on the design, fabrication, and surface modification of nanostructured MOSs to improve the performance of ESCs. The key issues for the improvement of efficiency, such as enhancing light harvesting and reducing surface charge recombination, are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  Google Scholar 

  2. Hau SK, Yip H-L, Jen AKY (2010) A review on the development of the inverted polymer solar cell architecture. Polym Rev 50(4):474–510

    Article  Google Scholar 

  3. Po R, Carbonera C, Bernardi A (2011) The role of buffer layers in polymer solar cells. Energy Environ Sci 4(2):285–310

    Article  Google Scholar 

  4. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161

    Article  Google Scholar 

  5. He F, Yu L (2011) How far can polymer solar cells go in need of a synergistic approach. J Phys Chem Lett 2(24):3102–3113

    Article  Google Scholar 

  6. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  7. Robel I, Subramanian V, Kuno M et al (2006) Quantum dot solar cells harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128(7):2385–2393

    Article  Google Scholar 

  8. Liang Z, Zhang Q, Jiang L et al (2015) ZnO Cathode buffer layers for inverted polymer solar cells. Energy Environ Sci 8(12):3442–3476

    Article  Google Scholar 

  9. Zhang QF, Cao GZ (2011) Hierarchically structured photoelectrodes for dye-sensitized solar cells. J Mater Chem 21(19):6769–6774

    Article  Google Scholar 

  10. Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934

    Article  Google Scholar 

  11. Bomben PG, Robson KCD, Sedach PA et al (2009) On the viability of cyclometalated Ru(II) complexes for light-harvesting applications. Inorg Chem 48(20):9631–9643

    Article  Google Scholar 

  12. Johansson PG, Rowley JG, Taheri A et al (2011) Long-wavelength sensitization of TiO2 by ruthenium diimine compounds with low-lying pi orbitals. Langmuir 27(23):14522–14531

    Article  Google Scholar 

  13. Zhao HC, Harney JP, Huang YT et al (2012) Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. Inorg Chem 51(1):1–3

    Article  Google Scholar 

  14. Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247

    Article  Google Scholar 

  15. Kim J, Choi H, Nahm C et al (2011) The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J Power Sources 196(23):10526–10531

    Article  Google Scholar 

  16. Panigrahi S, Basak D (2011) Morphology driven ultraviolet photosensitivity in ZnO-CdS composite. J Colloid Interface Sci 364(1):10–17

    Article  Google Scholar 

  17. Shen Q, Kobayashi J, Diguna L et al (2008) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys 103(8):522–530

    Article  Google Scholar 

  18. Plass R, Pelet S, Krueger J et al (2002) Quantum dot sensitization of organic-inorganic hybrid solar cells. J Phys Chem B 106(31):7578–7580

    Article  Google Scholar 

  19. Yu P, Zhu K, Norman AG et al (2006) Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B 110(50):25451–25454

    Article  Google Scholar 

  20. Zhu G, Pan L, Xu T et al (2011) CdS/CdSe cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl Mater Interfaces 3(8):3146–3151

    Article  Google Scholar 

  21. Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19(4):604–609

    Article  Google Scholar 

  22. Tian JJ, Gao R, Zhang QF et al (2012) Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C 116(35):18655–18662

    Article  Google Scholar 

  23. Tian J, Lv L, Fei C et al (2014) A highly efficient (>6%) Cd1−xMnxSe quantum dot sensitized solar cell. J Mater Chem A 2(46):19653–19659

    Article  Google Scholar 

  24. Kamat PV, Christians JA, Radich JG (2014) Quantum Dot Solar Cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 30(20):5716–5725

    Article  Google Scholar 

  25. Pan Z, Zhao K, Wang J et al (2013) Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7(6):5215–5222

    Article  Google Scholar 

  26. Wang J, Mora-Sero I, Pan Z et al (2013) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135(42):15913–15922

    Article  Google Scholar 

  27. Zhao K, Pan Z, Mora-Sero I et al (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137(16):5602–5609

    Article  Google Scholar 

  28. Hines DA, Kamat PV (2014) Recent advances in quantum dot surface chemistry. ACS Appl Mater Interface 6(5):3041–3057

    Article  Google Scholar 

  29. Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  Google Scholar 

  30. Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11(1):10–25

    Article  Google Scholar 

  31. Im J-H, Lee C-R, Lee J-W (2011) 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093

    Article  Google Scholar 

  32. Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647

    Article  Google Scholar 

  33. Yang WS, Noh JH, Jeon NJ et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237

    Article  Google Scholar 

  34. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  Google Scholar 

  35. Ramasamy K, Malik MA, Revaprasadu N et al (2013) Routes to nanostructured inorganic materials with potential for solar energy applications. Chem Mater 25(18):3551–3569

    Article  Google Scholar 

  36. Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10(8):2735–2741

    Article  Google Scholar 

  37. Koziej D, Lauria A, Niederberger M (2013) 25th Anniversary article: metal oxide particles in materials science: addressing all length scales. Adv Mater 26(2):235–257

    Article  Google Scholar 

  38. Wang H, Rogach AL (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26(1):123–133

    Article  Google Scholar 

  39. Bai Y, Mora-Sero I, De Angelis F et al (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114(19):10095–10130

    Article  Google Scholar 

  40. Chen Z, Pan D, Li Z et al (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114(15):7442–7486

    Article  Google Scholar 

  41. Tian J, Cao G (2016) Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord Chem Rev 320–321:193–215

    Article  Google Scholar 

  42. Xu J, Chen ZH, Zapien JA (2014) Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv Mater 26(31):5337–5367

    Article  Google Scholar 

  43. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  Google Scholar 

  44. Ye M, Wen X, Wang M et al (2014) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162

    Article  Google Scholar 

  45. Concina I, Vomiero A (2014) Metal oxide semiconductors for dye and quantum-dot-sensitized solar cells. Small 11(15):1744–1774

    Article  Google Scholar 

  46. Mora-Sero I, Gimenez S, Fabregat-Santiago F et al (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857

    Article  Google Scholar 

  47. Zhang S, Yang X, Numata Y (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6(5):1443

    Article  Google Scholar 

  48. Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7(8):2518–2534

    Article  Google Scholar 

  49. Boix PP, Nonomura K, Mathews N et al (2014) Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today 17(1):16–23

    Article  Google Scholar 

  50. Zhang Q, Myers D, Lan J et al (2012) Applications of light scattering in dye-sensitized solar cells. Phys Chem Chem Phys 14(43):14982–14998

    Article  Google Scholar 

  51. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phyl Chem C 112(48):18737–18753

    Article  Google Scholar 

  52. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556

    Article  Google Scholar 

  53. Zhang QF, Cao GZ (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6(1):91–109

    Article  Google Scholar 

  54. Tian J, Cao G (2015) Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J Phys Chem Lett 6(10):1859–1869

    Article  Google Scholar 

  55. Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277

    Article  Google Scholar 

  56. Feng X, Zhu K, Frank AJ et al (2012) Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew Chem Int Ed 51(11):2727–2730

    Article  Google Scholar 

  57. Kim YJ, Lee MH, Kim HJ et al (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21(36):3668–3673

    Article  Google Scholar 

  58. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20(4):1257–1261

    Article  Google Scholar 

  59. Ye MD, Xin XK, Lin CJ et al (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11(8):3214–3220

    Article  Google Scholar 

  60. Lin J, Heo YU, Nattestad A et al (2014) 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep 4:57–69

    Google Scholar 

  61. Bai Y, Yu H, Li Z et al (2012) In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24(43):5850–5856

    Article  Google Scholar 

  62. Dong Z, Ren H, Hessel CM et al (2013) Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv Mater 26(6):905–909

    Article  Google Scholar 

  63. Shi Y, Wang K, Du Y et al (2013) Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%. Adv Mater 25(32):4413–4419

    Article  Google Scholar 

  64. Gao R, Tian J, Liang Z et al (2013) Nanorod-nanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for dye-sensitized solar cells. Nanoscale 5(5):1894–1901

    Article  Google Scholar 

  65. Wang W, Zhang H, Wang R et al (2014) Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells. Nanoscale 6(4):2390–2396

    Article  Google Scholar 

  66. Gao R, Liang Z, Tian J et al (2013) ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy 2(1):40–48

    Article  Google Scholar 

  67. Chou TP, Zhang QF, Fryxell GE (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19(18):2588–2592

    Article  Google Scholar 

  68. Xi J, Zhang Q, Park K et al (2011) Enhanced power conversion efficiency in dye-sensitized solar cells with TiO2 aggregates/nanocrystallites mixed photoelectrodes. Electrochim Acta 56(5):1960–1966

    Article  Google Scholar 

  69. Zhang QF, Chou TR, Russo B et al (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 47(13):2402–2406

    Article  Google Scholar 

  70. Zhang Q, Uchaker E, Candelaria SL et al (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171

    Article  Google Scholar 

  71. Zhang Q, Chou TP, Russo B (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18(11):1654–1660

    Article  Google Scholar 

  72. Zhang Q, Park K, Xi J et al (2011) Recent progress in dye-sensitized solar cells using nanocrystallite aggregates. Adv Energy Mater 1(6):988–1001

    Article  Google Scholar 

  73. Zhang QF, Dandeneau CS, Zhou XY et al (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21(41):4087–4108

    Article  Google Scholar 

  74. Alam MJ, Cameron DC (2002) Preparation and characterization of TiO2 thin films by sol–gel method J Sol–gel. Sci Technol 25(2):137–145

    Google Scholar 

  75. K-i Katsumata, Ohno Y, Tomita K et al (2012) Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application. ACS Appl Mater Inter 4(9):4846–4852

    Article  Google Scholar 

  76. Dinh C-T, Nguyen T-D, Kleitz F et al (2009) Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11):3737–3743

    Article  Google Scholar 

  77. Gordon TR, Cargnello M, Paik T et al (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134(15):6751–6761

    Article  Google Scholar 

  78. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374

    Article  Google Scholar 

  79. Wang X, Tian J, Fei C et al (2014) Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv 5(12):8622–8629

    Article  Google Scholar 

  80. Park K, Zhang Q, Xi J et al (2015) Enhanced charge transport properties by strengthened necks between TiO2 aggregates for dye sensitized solar cells. Thin Solid Films 588:19–25

    Article  Google Scholar 

  81. Zhao Z, Liu G, Li B, Guo L et al (2015) Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles. J Mater Chem A 3(21):11320–11329

    Article  Google Scholar 

  82. Zhang QF, Yodyingyong S, Xi JT et al (2012) Oxide nanowires for solar cell applications. Nanoscale 4(5):1436–1445

    Article  Google Scholar 

  83. Law M, Greene LE, Radenovic A et al (2006) ZnO–Al2O3 and ZnO–TiO2 core-shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663

    Article  Google Scholar 

  84. Zhu S, Shan L, Chen X, He L, Chen J et al (2013) Hierarchical ZnO architectures consisting of nanorods and nanosheets prepared via a solution route for photovoltaic enhancement in dye-sensitized solar cells. RSC Adv 3(9):2910

    Article  Google Scholar 

  85. Park K, Zhang QF, Garcia BB et al (2011) Effect of annealing temperature on TiO2-ZnO core-shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C 115(11):4927–4934

    Article  Google Scholar 

  86. Park K, Zhang QF, Garcia BB et al (2010) Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Adv Mater 22(21):2329–2332

    Article  Google Scholar 

  87. Wang ML, Huang CG, Cao YG et al (2009) Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J Phys Appl Phys 42(15):155104

    Article  Google Scholar 

  88. Plank NOV, Howard I, Rao A et al (2009) Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures. J Phys Chem C 113(43):18515–18522

    Article  Google Scholar 

  89. Peng Q, Lewis JS, Hoertz PG et al (2012) Atomic layer deposition for electrochemical energy generation and storage systems. J Vac Sci Technol A 30(1):010803

    Article  Google Scholar 

  90. Fei C, Tian J, Wang Y et al (2014) Improved charge generation and collection in dye-sensitized solar cells with modified photoanode surface. Nano Energy 10:353–362

    Article  Google Scholar 

  91. Kato M, Ono H, Ichimura M et al (2011) Observation of defects that reduce schottky barrier height in 4H-SiC schottky contacts using electrochemical deposition of ZnO. Jpn J Appl Phys 50(3):036603

    Article  Google Scholar 

  92. Zhang M, Wang T, Cao G (2015) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60(6):330–352

    Article  Google Scholar 

  93. Zhang L, Zhao K, Xu W et al (2015) Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Phys Chem Chem Phys 17(12):7619–7623

    Article  Google Scholar 

  94. Xu W, Zhao K, Niu C et al (2014) Heterogeneous branched core-shell SnO2-PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 8:196–204

    Article  Google Scholar 

  95. Mai L-Q, Yang F, Zhao Y-L et al (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381

    Article  Google Scholar 

  96. Zhao Y, Xu L, Mai L et al (2012) Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci USA 109(48):19569–19574

    Article  Google Scholar 

  97. Chen W, Qiu Y, Yang S (2010) A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys Chem Chem Phys 12(32):9494–9501

    Article  Google Scholar 

  98. Chen W, Qiu YC, Zhong YC et al (2010) High-efficiency dye-sensitized solar cells based on the composite photoanocles of SnO2 nanoparticles/ZnO nanotetrapods. J Phys Chem A 114(9):3127–3138

    Article  Google Scholar 

  99. Li NC, Martin CR, Scrosati B (2000) A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochem Solid-State Lett 3(7):316–318

    Article  Google Scholar 

  100. Kim DW, Hwang IS, Kwon SJ et al (2007) Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for li ion battery electrodes. Nano Lett 7(10):3041–3045

    Article  Google Scholar 

  101. Park MS, Kang YM, Wang GX et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18(3):455–461

    Article  Google Scholar 

  102. Han SJ, Jang BC, Kim T, Oh SM, Hyeon T (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv Funct Mater 15(11):1845–1850

    Article  Google Scholar 

  103. Zhao QR, Xie Y, Dong T et al (2007) Oxidation-crystallization process of colloids: an effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. J Phys Chem C 111(31):11598–11603

    Article  Google Scholar 

  104. Lou XW, Wang Y, Yuan CL (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329

    Article  Google Scholar 

  105. Yang HX, Qian JF, Chen ZX et al (2007) Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J Phys Chem C 111(38):14067–14071

    Article  Google Scholar 

  106. Cheng B, Russell JM, Shi WS et al (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126(19):5972–5973

    Article  Google Scholar 

  107. Wu HB, Chen JS, Lou XW et al (2011) Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J Phys Chem C 115(50):24605–24610

    Article  Google Scholar 

  108. Qian JF, Liu P, Xiao Y et al (2009) TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21(36):3663–3667

    Google Scholar 

  109. Hossain A, Yang GW, Parameswaran M et al (2010) Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in cdse-sensitized solar cells. J Phys Chem C 114(49):21878–21884

    Article  Google Scholar 

  110. Wang Y, Tian J, Fei C et al (2014) Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J Phyl Chem C 118(45):25931–25938

    Article  Google Scholar 

  111. Kim SH, Markovich G, Rezvani S et al (1999) Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl Phys Lett 74(2):317–319

    Article  Google Scholar 

  112. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  113. Pan ZX, Zhang H, Cheng K (2012) Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6(5):3982–3991

    Article  Google Scholar 

  114. Li W, Zhong X (2015) Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J Phys Chem Lett 6(5):796–806

    Article  Google Scholar 

  115. Huang X, Huang S, Zhang Q et al (2011) A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem Commun 47(9):2664–2666

    Article  Google Scholar 

  116. Yang Z, Zhang QF, Xi JT et al (2012) CdS/CdSe Co-sensitized solar cell prepared by jointly using successive ion layer absorption and reaction method and chemical bath deposition process. Sci Adv Mater 4(10):1013–1017

    Article  Google Scholar 

  117. Etgar L (2013) Semiconductor nanocrystals as light harvesters in solar cells. Materials 6(2):445–459

    Article  Google Scholar 

  118. Lee J-W, Son D-Y, Ahn TK et al (2013) Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 3:1050

    Article  Google Scholar 

  119. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134(5):2508–2511

    Article  Google Scholar 

  120. Yang L, Zhou R, Lan J (2014) Efficient band alignment for ZnxCd1−xSe QD-sensitized TiO2 solar cells. J Mater Chem A 10:3669–3676

    Article  Google Scholar 

  121. Zhou R, Zhang Q, Uchaker E et al (2014) Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J Mater Chem A 2(8):2517–2525

    Article  Google Scholar 

  122. Tian J, Zhang Q, Uchaker E et al (2013) Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J Mater Chem A 1(23):6770–6775

    Article  Google Scholar 

  123. Tian J, Uchaker E, Zhang Q et al (2014) Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 6(6):4466–4472

    Article  Google Scholar 

  124. Tian J, Lv L, Wang X et al (2014) Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (5%) quantum dots sensitized solar cells. J Phys Chem C 118(30):16611–16617

    Article  Google Scholar 

  125. Tian JJ, Zhang QF, Zhang LL (2013) ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 5:936–943

    Article  Google Scholar 

  126. Tian J, Zhang Q, Uchaker E (2013) Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ Sci 6(12):35–42

    Article  Google Scholar 

  127. Yodyingyong S, Zhou XY, Zhang QF (2010) Enhanced photovoltaic performance of nanostructured hybrid solar cell using highly oriented TiO2 nanotubes. J Phys Chem C 114(49):21851–21855

    Article  Google Scholar 

  128. Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355

    Article  Google Scholar 

  129. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10(5):391–402

    Article  Google Scholar 

  130. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys 32(3):510

    Article  Google Scholar 

  131. Jeon NJ, Noh JH, Kim YC et al (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  Google Scholar 

  132. Christians JA, Manser JS, Kamat PV (2015) Best practices in perovskite solar cell efficiency measurements. avoiding the error of making bad cells look good. J Phys Chem Lett 6(5):852–857

    Article  Google Scholar 

  133. Eperon GE, Burlakov VM, Docampo P et al (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24(1):151–157

    Article  Google Scholar 

  134. Chen C, Ye M, Lv M et al (2014) Ultralong Rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells. Electrochem Acta 121:175–182

    Article  Google Scholar 

  135. Xiao Z, Dong Q, Bi C, Shao Y et al (2014) Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26(37):6503–6509

    Article  Google Scholar 

  136. Li B, Guo L, Fei C et al (2015) Dynamic growth of compact CH3NH3PbI3 capping layer for perovskite solar cell. ACS Appl Mater Interfaces 8(7):4680–4690

    Google Scholar 

  137. Zhao Z, Chen X, Cao G (2015) Probing the photovoltage and photocurrent in perovskite solar cells with nanoscale resolution. Adv Funct Mater 26(18):3048–3058

    Article  Google Scholar 

  138. White MS, Olson DC, Shaheen SE et al (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89(14):143517

    Article  Google Scholar 

  139. Zhang F, Xu X, Tang W et al (2011) Recent development of the inverted configuration organic solar cells. Sol Energ Mater Sol C 95(7):1785–1799

    Article  Google Scholar 

  140. Hau SK, Yip H-L, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92(25):253301–253303

    Article  Google Scholar 

  141. Yang T, Cai W, Qin D et al (2010) Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C 114(14):6849–6853

    Article  Google Scholar 

  142. Li C-Y, Wen T-C, Lee T-H et al (2009) An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers. J Mater Chem 19(11):1643–1647

    Article  Google Scholar 

  143. Huang J-H, Wei H-Y, Huang K-C et al (2010) Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells. Energy Environ Sci 3(5):654–658

    Article  Google Scholar 

  144. Yip H-L, Jen AKY (2012) Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci 5(3):5994–6011

    Article  Google Scholar 

  145. Yin Z, Zheng Q, Chen S-C et al (2013) Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. ACS Appl Mater Interfaces 5(18):9015–9025

    Article  Google Scholar 

  146. Wiranwetchayan O, Zhang Q, Zhou X et al (2012) Impact of the morphology of TiO2 films as cathode buffer layer on the efficiency of inverted-structure polymer solar cells. Chalcogenide Lett 9(4):157–163

    Google Scholar 

  147. Xi J, Wiranwetchayan O, Zhang Q et al (2012) Growth of single-crystalline rutile TiO2 nanorods on fluorine-doped tin oxide glass for organic-inorganic hybrid solar cells. J Mater Sci: Mater Electron 23(9):1657–1663

    Google Scholar 

  148. Liang Z, Zhang Q, Wiranwetchayan O et al (2012) Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solls. Adv Funct Mater 22(10):2194–2201

    Article  Google Scholar 

  149. Lan J-L, Liang Z, Yang Y-H et al (2014) The effect of SrTiO3:ZnO as cathodic buffer layer for inverted polymer solar cells. Nano Energy 4:140–149

    Article  Google Scholar 

  150. Lan J-L, Cherng S-J, Yang Y-H et al (2014) The effects of Ta2O5–ZnO films as cathodic buffer layers in inverted polymer solar cells. J Mater Chem A 2(24):9361–9370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Tian or Guozhong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tian, J., Wang, S., Cao, G. (2017). Design and Control of Nanostructures and Interfaces for Excitonic Solar Cells. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_17

Download citation

Publish with us

Policies and ethics