Abstract
Excitonic solar cells (ESCs) including dye-sensitized solar cells, quantum dot-sensitized solar cells, perovskites solar cells, and inverted organic photovoltaics are built upon metal oxide semiconductors (MOSs), which have attracted considerable attention recently and showed a promising development for the next generation solar cells. The development of nanotechnology has created various MOS nanostructures to open up new perspectives for their exploitation, significantly improving the performances of ESCs. One of the outstanding advantages is that the nanostructured mesoporous MOSs offer large specific surface area for loading a large number of active materials (dyes, quantum dots, or perovskites) so as to capture a sufficient fraction of photons as well as to facilitate efficient charge transfer. This review focuses on the recent work on the design, fabrication, and surface modification of nanostructured MOSs to improve the performance of ESCs. The key issues for the improvement of efficiency, such as enhancing light harvesting and reducing surface charge recombination, are discussed in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868
Hau SK, Yip H-L, Jen AKY (2010) A review on the development of the inverted polymer solar cell architecture. Polym Rev 50(4):474–510
Po R, Carbonera C, Bernardi A (2011) The role of buffer layers in polymer solar cells. Energy Environ Sci 4(2):285–310
Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161
He F, Yu L (2011) How far can polymer solar cells go in need of a synergistic approach. J Phys Chem Lett 2(24):3102–3113
Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740
Robel I, Subramanian V, Kuno M et al (2006) Quantum dot solar cells harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128(7):2385–2393
Liang Z, Zhang Q, Jiang L et al (2015) ZnO Cathode buffer layers for inverted polymer solar cells. Energy Environ Sci 8(12):3442–3476
Zhang QF, Cao GZ (2011) Hierarchically structured photoelectrodes for dye-sensitized solar cells. J Mater Chem 21(19):6769–6774
Bessho T, Yoneda E, Yum JH et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934
Bomben PG, Robson KCD, Sedach PA et al (2009) On the viability of cyclometalated Ru(II) complexes for light-harvesting applications. Inorg Chem 48(20):9631–9643
Johansson PG, Rowley JG, Taheri A et al (2011) Long-wavelength sensitization of TiO2 by ruthenium diimine compounds with low-lying pi orbitals. Langmuir 27(23):14522–14531
Zhao HC, Harney JP, Huang YT et al (2012) Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. Inorg Chem 51(1):1–3
Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247
Kim J, Choi H, Nahm C et al (2011) The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J Power Sources 196(23):10526–10531
Panigrahi S, Basak D (2011) Morphology driven ultraviolet photosensitivity in ZnO-CdS composite. J Colloid Interface Sci 364(1):10–17
Shen Q, Kobayashi J, Diguna L et al (2008) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys 103(8):522–530
Plass R, Pelet S, Krueger J et al (2002) Quantum dot sensitization of organic-inorganic hybrid solar cells. J Phys Chem B 106(31):7578–7580
Yu P, Zhu K, Norman AG et al (2006) Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B 110(50):25451–25454
Zhu G, Pan L, Xu T et al (2011) CdS/CdSe cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl Mater Interfaces 3(8):3146–3151
Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19(4):604–609
Tian JJ, Gao R, Zhang QF et al (2012) Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C 116(35):18655–18662
Tian J, Lv L, Fei C et al (2014) A highly efficient (>6%) Cd1−xMnxSe quantum dot sensitized solar cell. J Mater Chem A 2(46):19653–19659
Kamat PV, Christians JA, Radich JG (2014) Quantum Dot Solar Cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 30(20):5716–5725
Pan Z, Zhao K, Wang J et al (2013) Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7(6):5215–5222
Wang J, Mora-Sero I, Pan Z et al (2013) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135(42):15913–15922
Zhao K, Pan Z, Mora-Sero I et al (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137(16):5602–5609
Hines DA, Kamat PV (2014) Recent advances in quantum dot surface chemistry. ACS Appl Mater Interface 6(5):3041–3057
Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051
Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11(1):10–25
Im J-H, Lee C-R, Lee J-W (2011) 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093
Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647
Yang WS, Noh JH, Jeon NJ et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237
Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923
Ramasamy K, Malik MA, Revaprasadu N et al (2013) Routes to nanostructured inorganic materials with potential for solar energy applications. Chem Mater 25(18):3551–3569
Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10(8):2735–2741
Koziej D, Lauria A, Niederberger M (2013) 25th Anniversary article: metal oxide particles in materials science: addressing all length scales. Adv Mater 26(2):235–257
Wang H, Rogach AL (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26(1):123–133
Bai Y, Mora-Sero I, De Angelis F et al (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114(19):10095–10130
Chen Z, Pan D, Li Z et al (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114(15):7442–7486
Tian J, Cao G (2016) Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord Chem Rev 320–321:193–215
Xu J, Chen ZH, Zapien JA (2014) Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv Mater 26(31):5337–5367
Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663
Ye M, Wen X, Wang M et al (2014) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162
Concina I, Vomiero A (2014) Metal oxide semiconductors for dye and quantum-dot-sensitized solar cells. Small 11(15):1744–1774
Mora-Sero I, Gimenez S, Fabregat-Santiago F et al (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857
Zhang S, Yang X, Numata Y (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6(5):1443
Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7(8):2518–2534
Boix PP, Nonomura K, Mathews N et al (2014) Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today 17(1):16–23
Zhang Q, Myers D, Lan J et al (2012) Applications of light scattering in dye-sensitized solar cells. Phys Chem Chem Phys 14(43):14982–14998
Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phyl Chem C 112(48):18737–18753
Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556
Zhang QF, Cao GZ (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6(1):91–109
Tian J, Cao G (2015) Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J Phys Chem Lett 6(10):1859–1869
Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277
Feng X, Zhu K, Frank AJ et al (2012) Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew Chem Int Ed 51(11):2727–2730
Kim YJ, Lee MH, Kim HJ et al (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21(36):3668–3673
Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20(4):1257–1261
Ye MD, Xin XK, Lin CJ et al (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11(8):3214–3220
Lin J, Heo YU, Nattestad A et al (2014) 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep 4:57–69
Bai Y, Yu H, Li Z et al (2012) In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv Mater 24(43):5850–5856
Dong Z, Ren H, Hessel CM et al (2013) Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv Mater 26(6):905–909
Shi Y, Wang K, Du Y et al (2013) Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%. Adv Mater 25(32):4413–4419
Gao R, Tian J, Liang Z et al (2013) Nanorod-nanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for dye-sensitized solar cells. Nanoscale 5(5):1894–1901
Wang W, Zhang H, Wang R et al (2014) Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells. Nanoscale 6(4):2390–2396
Gao R, Liang Z, Tian J et al (2013) ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy 2(1):40–48
Chou TP, Zhang QF, Fryxell GE (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19(18):2588–2592
Xi J, Zhang Q, Park K et al (2011) Enhanced power conversion efficiency in dye-sensitized solar cells with TiO2 aggregates/nanocrystallites mixed photoelectrodes. Electrochim Acta 56(5):1960–1966
Zhang QF, Chou TR, Russo B et al (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 47(13):2402–2406
Zhang Q, Uchaker E, Candelaria SL et al (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171
Zhang Q, Chou TP, Russo B (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18(11):1654–1660
Zhang Q, Park K, Xi J et al (2011) Recent progress in dye-sensitized solar cells using nanocrystallite aggregates. Adv Energy Mater 1(6):988–1001
Zhang QF, Dandeneau CS, Zhou XY et al (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21(41):4087–4108
Alam MJ, Cameron DC (2002) Preparation and characterization of TiO2 thin films by sol–gel method J Sol–gel. Sci Technol 25(2):137–145
K-i Katsumata, Ohno Y, Tomita K et al (2012) Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application. ACS Appl Mater Inter 4(9):4846–4852
Dinh C-T, Nguyen T-D, Kleitz F et al (2009) Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11):3737–3743
Gordon TR, Cargnello M, Paik T et al (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134(15):6751–6761
Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374
Wang X, Tian J, Fei C et al (2014) Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv 5(12):8622–8629
Park K, Zhang Q, Xi J et al (2015) Enhanced charge transport properties by strengthened necks between TiO2 aggregates for dye sensitized solar cells. Thin Solid Films 588:19–25
Zhao Z, Liu G, Li B, Guo L et al (2015) Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles. J Mater Chem A 3(21):11320–11329
Zhang QF, Yodyingyong S, Xi JT et al (2012) Oxide nanowires for solar cell applications. Nanoscale 4(5):1436–1445
Law M, Greene LE, Radenovic A et al (2006) ZnO–Al2O3 and ZnO–TiO2 core-shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663
Zhu S, Shan L, Chen X, He L, Chen J et al (2013) Hierarchical ZnO architectures consisting of nanorods and nanosheets prepared via a solution route for photovoltaic enhancement in dye-sensitized solar cells. RSC Adv 3(9):2910
Park K, Zhang QF, Garcia BB et al (2011) Effect of annealing temperature on TiO2-ZnO core-shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C 115(11):4927–4934
Park K, Zhang QF, Garcia BB et al (2010) Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Adv Mater 22(21):2329–2332
Wang ML, Huang CG, Cao YG et al (2009) Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J Phys Appl Phys 42(15):155104
Plank NOV, Howard I, Rao A et al (2009) Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures. J Phys Chem C 113(43):18515–18522
Peng Q, Lewis JS, Hoertz PG et al (2012) Atomic layer deposition for electrochemical energy generation and storage systems. J Vac Sci Technol A 30(1):010803
Fei C, Tian J, Wang Y et al (2014) Improved charge generation and collection in dye-sensitized solar cells with modified photoanode surface. Nano Energy 10:353–362
Kato M, Ono H, Ichimura M et al (2011) Observation of defects that reduce schottky barrier height in 4H-SiC schottky contacts using electrochemical deposition of ZnO. Jpn J Appl Phys 50(3):036603
Zhang M, Wang T, Cao G (2015) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60(6):330–352
Zhang L, Zhao K, Xu W et al (2015) Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Phys Chem Chem Phys 17(12):7619–7623
Xu W, Zhao K, Niu C et al (2014) Heterogeneous branched core-shell SnO2-PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 8:196–204
Mai L-Q, Yang F, Zhao Y-L et al (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381
Zhao Y, Xu L, Mai L et al (2012) Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci USA 109(48):19569–19574
Chen W, Qiu Y, Yang S (2010) A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys Chem Chem Phys 12(32):9494–9501
Chen W, Qiu YC, Zhong YC et al (2010) High-efficiency dye-sensitized solar cells based on the composite photoanocles of SnO2 nanoparticles/ZnO nanotetrapods. J Phys Chem A 114(9):3127–3138
Li NC, Martin CR, Scrosati B (2000) A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochem Solid-State Lett 3(7):316–318
Kim DW, Hwang IS, Kwon SJ et al (2007) Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for li ion battery electrodes. Nano Lett 7(10):3041–3045
Park MS, Kang YM, Wang GX et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18(3):455–461
Han SJ, Jang BC, Kim T, Oh SM, Hyeon T (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv Funct Mater 15(11):1845–1850
Zhao QR, Xie Y, Dong T et al (2007) Oxidation-crystallization process of colloids: an effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. J Phys Chem C 111(31):11598–11603
Lou XW, Wang Y, Yuan CL (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329
Yang HX, Qian JF, Chen ZX et al (2007) Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J Phys Chem C 111(38):14067–14071
Cheng B, Russell JM, Shi WS et al (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126(19):5972–5973
Wu HB, Chen JS, Lou XW et al (2011) Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J Phys Chem C 115(50):24605–24610
Qian JF, Liu P, Xiao Y et al (2009) TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21(36):3663–3667
Hossain A, Yang GW, Parameswaran M et al (2010) Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in cdse-sensitized solar cells. J Phys Chem C 114(49):21878–21884
Wang Y, Tian J, Fei C et al (2014) Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J Phyl Chem C 118(45):25931–25938
Kim SH, Markovich G, Rezvani S et al (1999) Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl Phys Lett 74(2):317–319
Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715
Pan ZX, Zhang H, Cheng K (2012) Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6(5):3982–3991
Li W, Zhong X (2015) Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J Phys Chem Lett 6(5):796–806
Huang X, Huang S, Zhang Q et al (2011) A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem Commun 47(9):2664–2666
Yang Z, Zhang QF, Xi JT et al (2012) CdS/CdSe Co-sensitized solar cell prepared by jointly using successive ion layer absorption and reaction method and chemical bath deposition process. Sci Adv Mater 4(10):1013–1017
Etgar L (2013) Semiconductor nanocrystals as light harvesters in solar cells. Materials 6(2):445–459
Lee J-W, Son D-Y, Ahn TK et al (2013) Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 3:1050
Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134(5):2508–2511
Yang L, Zhou R, Lan J (2014) Efficient band alignment for ZnxCd1−xSe QD-sensitized TiO2 solar cells. J Mater Chem A 10:3669–3676
Zhou R, Zhang Q, Uchaker E et al (2014) Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J Mater Chem A 2(8):2517–2525
Tian J, Zhang Q, Uchaker E et al (2013) Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J Mater Chem A 1(23):6770–6775
Tian J, Uchaker E, Zhang Q et al (2014) Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 6(6):4466–4472
Tian J, Lv L, Wang X et al (2014) Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (5%) quantum dots sensitized solar cells. J Phys Chem C 118(30):16611–16617
Tian JJ, Zhang QF, Zhang LL (2013) ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 5:936–943
Tian J, Zhang Q, Uchaker E (2013) Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ Sci 6(12):35–42
Yodyingyong S, Zhou XY, Zhang QF (2010) Enhanced photovoltaic performance of nanostructured hybrid solar cell using highly oriented TiO2 nanotubes. J Phys Chem C 114(49):21851–21855
Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355
Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10(5):391–402
Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys 32(3):510
Jeon NJ, Noh JH, Kim YC et al (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903
Christians JA, Manser JS, Kamat PV (2015) Best practices in perovskite solar cell efficiency measurements. avoiding the error of making bad cells look good. J Phys Chem Lett 6(5):852–857
Eperon GE, Burlakov VM, Docampo P et al (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24(1):151–157
Chen C, Ye M, Lv M et al (2014) Ultralong Rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells. Electrochem Acta 121:175–182
Xiao Z, Dong Q, Bi C, Shao Y et al (2014) Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26(37):6503–6509
Li B, Guo L, Fei C et al (2015) Dynamic growth of compact CH3NH3PbI3 capping layer for perovskite solar cell. ACS Appl Mater Interfaces 8(7):4680–4690
Zhao Z, Chen X, Cao G (2015) Probing the photovoltage and photocurrent in perovskite solar cells with nanoscale resolution. Adv Funct Mater 26(18):3048–3058
White MS, Olson DC, Shaheen SE et al (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89(14):143517
Zhang F, Xu X, Tang W et al (2011) Recent development of the inverted configuration organic solar cells. Sol Energ Mater Sol C 95(7):1785–1799
Hau SK, Yip H-L, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92(25):253301–253303
Yang T, Cai W, Qin D et al (2010) Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C 114(14):6849–6853
Li C-Y, Wen T-C, Lee T-H et al (2009) An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers. J Mater Chem 19(11):1643–1647
Huang J-H, Wei H-Y, Huang K-C et al (2010) Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells. Energy Environ Sci 3(5):654–658
Yip H-L, Jen AKY (2012) Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci 5(3):5994–6011
Yin Z, Zheng Q, Chen S-C et al (2013) Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. ACS Appl Mater Interfaces 5(18):9015–9025
Wiranwetchayan O, Zhang Q, Zhou X et al (2012) Impact of the morphology of TiO2 films as cathode buffer layer on the efficiency of inverted-structure polymer solar cells. Chalcogenide Lett 9(4):157–163
Xi J, Wiranwetchayan O, Zhang Q et al (2012) Growth of single-crystalline rutile TiO2 nanorods on fluorine-doped tin oxide glass for organic-inorganic hybrid solar cells. J Mater Sci: Mater Electron 23(9):1657–1663
Liang Z, Zhang Q, Wiranwetchayan O et al (2012) Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solls. Adv Funct Mater 22(10):2194–2201
Lan J-L, Liang Z, Yang Y-H et al (2014) The effect of SrTiO3:ZnO as cathodic buffer layer for inverted polymer solar cells. Nano Energy 4:140–149
Lan J-L, Cherng S-J, Yang Y-H et al (2014) The effects of Ta2O5–ZnO films as cathodic buffer layers in inverted polymer solar cells. J Mater Chem A 2(24):9361–9370
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Tian, J., Wang, S., Cao, G. (2017). Design and Control of Nanostructures and Interfaces for Excitonic Solar Cells. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-57003-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57002-0
Online ISBN: 978-3-319-57003-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)