Skip to main content

Lagrangian and Hamiltonian Dynamics on \(\mathsf{SO(3)}\)

  • Chapter
  • First Online:
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Abstract

The configuration manifold is a product of copies of the special orthogonal group \(\mathsf{SO(3)}\) embedded in \(\mathbb{R}^{3\times 3}\). A Lagrangian function \(L: T(\mathsf{SO(3)} \times \ldots \times \mathsf{SO(3)}) \rightarrow \mathbb{R}^{1}\) is introduced and variational methods are used to derive Euler–Lagrange equations and Hamilton’s equations. Several rotating rigid body systems are studied to illustrate the developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989)

    Book  Google Scholar 

  2. A.M. Bloch, Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24 (Springer, New York, 2003)

    Google Scholar 

  3. N.A. Chaturvedi, F. Bacconi, A.K. Sanyal, D.S. Bernstein, N.H. McClamroch, Stabilization of a 3D rigid pendulum, in Proceedings of the American Control Conference (2005), pp. 3030–3035

    Google Scholar 

  4. N.A. Chaturvedi, N.H. McClamroch, D. Bernstein, Asymptotic smooth stabilization of the inverted 3-D pendulum. IEEE Trans. Autom. Control 54 (6), 1204–1215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. N.A. Chaturvedi, T. Lee, M. Leok, N. Harris McClamroch, Nonlinear dynamics of the 3D pendulum. J. Nonlinear Sci. 21 (1), 3–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.S. Chirikjian, A.B. Kyatkin, Harmonic Analysis for Engineers and Applied Scientists (Dover Publications, Mineola, 2016)

    Google Scholar 

  7. P.E. Crouch, Spacecraft attitude control and stabilizations: applications of geometric control theory to rigid body models. IEEE Trans. Autom. Control 29 (4), 321–331 (1984)

    Article  MATH  Google Scholar 

  8. H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison Wesley, Reading, 2001)

    MATH  Google Scholar 

  9. D. Greenwood, Classical Dynamics (Prentice Hall, Englewood Cliffs, 1977)

    Google Scholar 

  10. A. Hernández-Garduño, J.K. Lawson, J.E. Marsden, Relative equilibria for the generalized rigid body. J. Geom. Phys. 53 (3), 259–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.C. Hughes, Spacecraft Attitude Dynamics (Wiley, New York, 1986)

    Google Scholar 

  12. T. Lee, M. Leok, N.H. McClamroch, Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Lee, M. Leok, N.H. McClamroch, Lie group variational integrators for the full body problem in orbital mechanics. Celest. Mech. Dyn. Astron. 98 (2), 121–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Lee, M. Leok, N.H. McClamroch, Stable manifolds of saddle points for pendulum dynamics on S 2 and SO(3), in Proceedings of the IEEE Conference on Decision and Control (2011), pp. 3915–3921

    Google Scholar 

  15. F.L. Markley, J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  16. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17, 2nd edn. (Springer, New York, 1999)

    Google Scholar 

  17. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1993)

    MATH  Google Scholar 

  18. C. Rui, I.V. Kolmanovsky, N.H. McClamroch, Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels. IEEE Trans. Autom. Control 45, 1455–1469 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Shen, A.K. Sanyal, N.A. Chaturvedi, D.S. Bernstein, N.H. McClamroch, Dynamics and control of a 3D pendulum, in Proceedings of IEEE Conference on Decision and Control (2004), pp. 323–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, T., Leok, M., McClamroch, N.H. (2018). Lagrangian and Hamiltonian Dynamics on \(\mathsf{SO(3)}\) . In: Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. Interaction of Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-56953-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56953-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56951-2

  • Online ISBN: 978-3-319-56953-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics