Skip to main content

Collaborative Computer Algebra

  • Conference paper
  • First Online:
Applications of Computer Algebra (ACA 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 198))

Included in the following conference series:

Abstract

A definition of Collaborative Computer Algebra as a field of research is proposed. The significance of this field is examined and theoretical frameworks that have the potential to form its foundation are surveyed. Furthermore, the state of the art and open questions of Collaborative Computer Algebra are discussed.

Partially funded by Seton Hall University’s Office of the Provost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Autexier, S., David, C., Dietrich, D., Kohlhase, M., Zholudev, V.: Workflows for the management of change in science, technologies, engineering and mathematics. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Intelligent Computer Mathematics. Lecture Notes in Computer Science, pp. 164–179. Springer, Berlin (2011)

    Chapter  Google Scholar 

  2. Ayyad, M.: Using the actor-network theory to interpret e-government implementation barriers. In: Proceedings of the 3rd International Conference on Theory and Practice of Electronic Governance, ICEGOV ’09, pp. 183–190. ACM, New York (2009)

    Google Scholar 

  3. Bardram, J., Doryab, A.: Activity analysis: applying activity theory to analyze complex work in hospitals. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW ’11, pp. 455–464. ACM, New York (2011)

    Google Scholar 

  4. Bell, F.: Network theories for technology-enabled learning and social change: connectivism and actor network theory. In: Networked Learning Conference 2010: Seventh International Conference on Networked Learning, Aalborg (2010)

    Google Scholar 

  5. Bell, F.: Connectivism: its place in theory-informed research and innovation in technology-enabled learning. Int. Rev. Res. Open Distance Learn. 12(3), 98–118 (2010)

    MathSciNet  Google Scholar 

  6. Bodker, S.: A human activity approach to user interfaces. Hum. Comput. Interact. 4(3), 171–195 (1989)

    Article  Google Scholar 

  7. Boitshwarelo, B.: Proposing an integrated research framework for connectivism: utilising theoretical synergies. Int. Rev. Res. Open Distance Learn. 12(3), 161–179 (2011)

    Google Scholar 

  8. Burnett, M., Bogart, C., Cao, J., Grigoreanu, V., Kulesza, T., Lawrance, J.: End-user software engineering and distributed cognition. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Foundations for End User Programming, SEEUP ’09, pp. 1–7. IEEE Computer Society, Washington (2009)

    Google Scholar 

  9. Carstea, A., Macariu, G., Frincu, M., Petcu, D.: Workflow management for symbolic grid services. In: 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2008. SYNASC ’08, pp. 373–379. (2008)

    Google Scholar 

  10. CICM Steering Committee.: CICM - Conferences on Intelligent Computer Mathematics. http://cicm-conference.org/cicm.php Accessed 11 Sept 2015

  11. Cohen, J.S.: Computer Algebra and Symbolic Computation: Mathematical Methods. A K Peters, Wellesley (2003)

    MATH  Google Scholar 

  12. Coskunay, D.F., Akir, M.P.: Examination of computer supported collaborative business process modeling with activity theory. In: Proceedings of the XV International Conference on Human Computer Interaction, Interacción ’14, pp.15:1–15:8. ACM, New York (2014)

    Google Scholar 

  13. Decker, W., Greuel, G.-M., Pfister,G., Schnemann, H.: Singular—a computer algebra system for polynomial computations. Free software under the GNU General Public License. Accessed 19 Oct 2014

    Google Scholar 

  14. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2015)

  15. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540 (2009)

    Article  Google Scholar 

  16. Deolalikar p vs NP paper-polymath1wiki. http://michaelnielsen.org/polymath1/index.php?title=Deolalikar_P_vs_NP_paper. Accessed 26 Aug 2014

  17. Downes, S.: An introduction to connective knowledge. http://www.downes.ca/cgi-bin/page.cgi?post=33034. Accessed 25 Sept 2014

  18. Downes, S.: Learning networks and connective knowledge. In: Yang, H.H., Yuen, S.C.Y. (eds.) Collective Intelligence and E-Learning 2.0: Implications of Web-Based Communities and Networking. IGI Global, Washington (2010)

    Google Scholar 

  19. Dumas, J.-G., Gautier, T., Pernet, C., Saunders, B.D.: LinBox founding scope allocation, parallel building blocks, and separate compilation. In: Mathematical SoftwareICMS 2010. pp. 77–83. Springer (2010)

    Google Scholar 

  20. Dunaway, M.K.: Connectivism. Ref. Serv. Rev. 39(4), 675–685 (2011)

    Article  Google Scholar 

  21. Dweling, S., Schmidt, B., Gb, A.: A model for the design of interactive systems based on activity theory. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12, pp. 539–548. ACM, New York (2012)

    Google Scholar 

  22. Engestrm, Y., Miettinen, R., Punamki-Gitai, R.-L. (eds.): Perspectives on Activity Theory. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  23. Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., Stephens, S.: The semantic web in action. Sci. Am. 297(6), 90–97 (2007)

    Article  Google Scholar 

  24. Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Common motifs in scientific workflows: an empirical analysis. Future Gener. Comput. Syst. 36, 338–351 (2014)

    Article  Google Scholar 

  25. Geszti, T.: Physical Models of Neural Networks. World Scientific Pub Co Inc, Singapore (1990)

    Book  MATH  Google Scholar 

  26. Gowers, T.: The polymath blog. http://polymathprojects.org/. Accessed 19 Oct 2014

  27. Gräbe, H.-G., Nareike, A., Johanning, S: The SymbolicData ProjectTowards a Computer Algebra Social Network (2014)

    Google Scholar 

  28. Grabmeier, J.: Computeralgebra-eine Säule des Wissenschaftlichen Rechnens/Computer-Algebra—a part of the Foundation of Scientific Computing. Inform. Technol. 37(6), 5–30 (1995)

    Google Scholar 

  29. Gunawong, P., Gao, P.: Challenges of egovernment in developing countries: actor-network analysis of Thailand’s smart ID card project. In: Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development, ICTD ’10, pp. 17:1–17:9. ACM, New York (2010)

    Google Scholar 

  30. Halloran, J., Rogers, Y., Scaife, M.: Taking the ’No’ out of lotus notes: activity theory, groupware, and student groupwork. In: Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, CSCL ’02, pp. 169–178. International Society of the Learning Sciences, Boulder (2002)

    Google Scholar 

  31. Halpin, H.: Does the web extend the mind? In: Proceedings of the 5th Annual ACM Web Science Conference, WebSci ’13, pp. 139–147. ACM, New York (2013)

    Google Scholar 

  32. Halverson, CA.: Inside the cognitive workplace: new technology and air traffic control. (Doctoral dissertation, University of California, San Diego) (1995)

    Google Scholar 

  33. Halverson, C.A.: Activity theory and distributed cognition: or what does CSCW need to DO with theories? Comput. Support. Coop. Work (CSCW) 11(1–2), 243–267 (2002)

    Article  Google Scholar 

  34. Hammond, J., Koubek, R.J., Harvey, C.M.: Distributed collaboration for engineering design: a review and reappraisal. Hum. Factors Ergon. Manuf. 11(1), 35–52 (2001)

    Article  Google Scholar 

  35. Heinle, A., Levandovskyy, V.: The SDEval benchmarking toolkit. ACM Commun. Comput. Algebra 49(1), 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Henneke, M., Matthee, M.: The adoption of e-learning in corporate training environments: an activity theory based overview. In: Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, SAICSIT ’12, pp. 178–187. ACM, New York (2012)

    Google Scholar 

  37. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput. Hum. Interact. 7(2), 174–196 (2000)

    Article  Google Scholar 

  38. Hutchins, E.: Distributed cognition. In: Internacional Enciclopedia of the Social and Behavioral Sciences (2000)

    Google Scholar 

  39. Hutchins, E.: How a cockpit remembers its speeds. Cognit. Sci. 19(3), 265–288 (1995)

    Article  Google Scholar 

  40. IEEE.: IEEE computer society-premier organization of computer professionals. http://www.computer.org/portal/web/guest/home. Accessed 26 Aug 2014

  41. Informa UK Limited.: International Journal of Computer Mathematics. ISSN 1029-0265

    Google Scholar 

  42. Kaldoudi, E., Dovrolis, N., Dietze, S.: Information organization on the internet based on heterogeneous social networks. In: Proceedings of the 29th ACM International Conference on Design of Communication, SIGDOC ’11, pp. 107–114. ACM, New York (2011)

    Google Scholar 

  43. Kirschman, J.S., Greenstein, J.S.: The use of groupware for collaboration in distributed student engineering design teams. J. Eng. Educ. 91(4), 403–407 (2002)

    Article  Google Scholar 

  44. Kumar, N., Rangaswamy, N.: The mobile media actor-network in Urban India. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pp. 1989–1998. ACM, New York (2013)

    Google Scholar 

  45. Kuutti, K.: Activity theory as a potential framework for human-computer interaction research. In: Nardi, B.A. (ed.) Context and Consciousness: Activity Theory and Human-Computer Interaction. MIT Press, Cambridge (1996)

    Google Scholar 

  46. Latour, B.: Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford University Press, Oxford (2007)

    Google Scholar 

  47. Latour, B., Woolgar, S.: Laboratory Life: The Construction of Scientific Knowledge. Princeton University Press, Princeton (1986)

    Google Scholar 

  48. Law, J.: Actor-network theory and material semiotics. In: Turner, B.S. (ed.) The New Blackwell Companion to Social Theory, 3rd edn, pp. 141–158. Blackwell, Oxford (2008)

    Google Scholar 

  49. Leont’ev, A.: The problem of activity in psychology. J. Russ. East Eur. Psychol. 13(2), 4–33 (1974)

    Article  Google Scholar 

  50. Linton, S., Hammond, K., Konovalov, A., Brown, C., Trinder, P.W., Loidl, H.W., Horn, P., Roozemond, D.: Easy composition of symbolic computation software using SCSCP: a new Lingua Franca for symbolic computation. J. Symb. Comput. 49, 95–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lu, S.Y., Elmaraghy, W., Schuh, G., Wilhelm, R.: A scientific foundation of collaborative engineering. CIRP Ann. Manuf. Technol. 56(2), 605–634 (2007)

    Article  Google Scholar 

  52. MathOverflow.: MathOverflow site. http://mathoverflow.net/

  53. Minimair, M.: Collaborative Computer Algebra Systems. Applications of Computer Algebra (ACA) (2014)

    Google Scholar 

  54. Minimair, M.: Collaborative computer algebra: review of foundations. Applications of Computer Algebra (ACA) (2015)

    Google Scholar 

  55. Monell, D.W., Piland, W.M.: Aerospace systems design in NASA’s collaborative engineering environment. Acta Astronaut. 47(2), 255–264 (2000)

    Article  Google Scholar 

  56. Moran, S. Nakata, K., Inoue, S.: Bridging the analytical gap between distributed cognition and actor network theory using a tool for information trajectory analysis. In: Proceedings of the 30th European Conference on Cognitive Ergonomics, ECCE ’12, pp. 72–77, ACM, New York (2012)

    Google Scholar 

  57. Nardi, B.A.: Studying context: a comparison of activity theory, situated action models, and distributed cognition. Context Conscious. pp. 69–102. (1996)

    Google Scholar 

  58. National Science Foundation.: US NSF-CISE-IIS-Cyber-Human Systems (CHS). http://www.nsf.gov/cise/iis/chs_pgm13.jsp. Accessed 20 Oct 2014

  59. Neale, D.C., Carroll, J.M., Rosson, M.B.: Evaluating computer-supported cooperative work: models and frameworks. pp. 2–121. ACM (2004)

    Google Scholar 

  60. Newstetter, W., Johri, A., Wulf, V.: Laboratory learning: industry and University Research as site for situated and distributed cognition. In: Proceedings of the 8th International Conference on International Conference for the Learning Sciences-Volume 3, ICLS’08, pp. 290–297. International Society of the Learning Sciences, Utrecht (2008)

    Google Scholar 

  61. Nobarany, S., Haraty, M., Fisher, B.: Facilitating the reuse process in distributed collaboration: a distributed cognition approach. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12, pp. 1223–1232. ACM, New York (2012)

    Google Scholar 

  62. Pelizza, A.: Openness as an asset: a classification system for online communities based on actor-network theory. In: Proceedings of the 6th International Symposium on Wikis and Open Collaboration, WikiSym ’10, pp. 8:1–8:10, ACM, New York (2010)

    Google Scholar 

  63. planetmath.org | math for the people, by the people. http://planetmath.org/. Accessed 24 Aug 2014

  64. Popper, K.R.: Conjectures and Refutations: The Growth of Scientific Knowledge. Psychology Press, New York (2002)

    Google Scholar 

  65. Rajkomar A., Blandford, A.: Distributed cognition for evaluating healthcare technology. In: Proceedings of the 25th BCS Conference on Human-Computer Interaction, BCS-HCI ’11, pp. 341–350, British Computer Society, Swinton (2011)

    Google Scholar 

  66. Randall, D.P., Diamant, E.I., Lee, C.P.: Creating sustainable cyberinfrastructures. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 1759–1768, ACM, New York (2015)

    Google Scholar 

  67. Rousseau, J.J.: Historical case study of the supernet consortium: investigating change management and the concepts of connectivism and distributed professional learning communities. ProQuest (2007)

    Google Scholar 

  68. Saguna, S., Zaslavsky, A., Chakraborty, D.: Complex activity recognition using context-driven activity theory and activity signatures. ACM Trans. Comput. Hum. Interact. 20(6), 1–32 (2013)

    Article  Google Scholar 

  69. Siemens, G.: http://www.knowingknowledge.com (2006)

  70. Siemens, G.: Connectivism: a learning theory for the digital age. Int. J. Instruct. Technol. Distance Learn. 2(1), 3–10 (2005)

    Google Scholar 

  71. SIGCHI.: Welcome SIGCHI. http://www.sigchi.org/. Accessed 26 Aug 2014

  72. Stahl, G.: Studying Virtual Math Teams. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  73. Stein, W.A.: Sage notebook. http://sagenb.org/. Accessed 19 Oct 2014

  74. Steinberg, S., Wester, M.: Conferences on Applications of Computer Algebra

    Google Scholar 

  75. Strong, K., Hutchins, H.M.: Connectivism: a theory for learning in a world of growing complexity. Impact 1(1), 53–67 (2009)

    Google Scholar 

  76. The 2012 ACM Computing Classification System Association for Computing Machinery

    Google Scholar 

  77. The GAP Group.: GAP system for computational discrete algebra. http://www.gap-system.org/. Accessed 19 Oct 2014

  78. The GAP Group.: GAP–Groups, Algorithms, and Programming, Version 4.7.8 (2015)

    Google Scholar 

  79. Tinmaz, H.: Social networking websites as an innovative framework for connectivism. Contemp. Educ. Technol. 3(3), 234–245 (2012)

    Google Scholar 

  80. Ugalde, L.R.: http://formulae.org (2015)

  81. van der Hoeven, J.: GNU TeXmacs. SIGSAM Bull. 38(1), 24–25 (2004)

    Article  Google Scholar 

  82. van der Hoeven, J., Lecerf, G., Mourrain, B.: Mathemagix. Accessed 19 Oct 2014

    Google Scholar 

  83. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1980)

    Google Scholar 

  84. Waterloo Maple, Inc. Maplesoft-technical computing software for engineers, mathematicians, scientists, instructors and students. http://maplesoft.com/. Accessed 19 Oct 2014

  85. Waycott, J., Jones, A., Scanlon, E.: PDAs as lifelong learning tools: an activity theory based analysis. Learn. Media Technol. 30(2), 107–130 (2005)

    Article  Google Scholar 

  86. Wolfram Research.: Wolfram: computation meets knowledge. http://www.wolfram.com/. Accessed 19 Oct 2014

  87. Xing, W., Wadholm, B., Goggins, S.: Learning analytics in CSCL with a focus on assessment: an exploratory study of activity theory-informed cluster analysis. In: Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, LAK ’14, pp. 59–67, ACM, New York (2014)

    Google Scholar 

Download references

Acknowledgements

I thank Suzy Maddah for pointing out the example of open source development of mathematical software and Elena Varbanova and Hans-Gert Gräbe for discussions on connectivism and respectively Grabmeier’s paper [28]. I also thank the audiences of my ACA 2014 and 2015 presentations for sharing their thoughts on collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Minimair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Minimair, M. (2017). Collaborative Computer Algebra. In: Kotsireas, I., Martínez-Moro, E. (eds) Applications of Computer Algebra. ACA 2015. Springer Proceedings in Mathematics & Statistics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-56932-1_20

Download citation

Publish with us

Policies and ethics