Skip to main content

Molecular Pathology of Glioblastoma- An Update

  • Chapter
  • First Online:
Advances in Biology and Treatment of Glioblastoma

Part of the book series: Current Cancer Research ((CUCR))

  • 995 Accesses

Abstract

Glioblastoma, the most common primary brain malignancy, has piqued the interest of researchers for decades. As a result, it is one of the most studied brain malignancies. Advancement in technology in recent years has had a tremendous impact on the understanding of this dreaded disease. Deepening insight into its molecular pathology has brought about a paradigm shift in the knowledge of this disease. The WHO has made significant changes in the classification of glioblastoma with emphasis on the molecular changes, thus advocating a histomolecular diagnosis, as opposed to the purely histological diagnosis which was the gold standard until recently. The molecular diagnostics aid the decision making in the management of the disease. This chapter discusses the histomorphology of glioblastoma, new WHO classification of glioblastoma, recent molecular contributions of various research groups leading to changing concepts and also the less explored avenues like intra-tumor heterogeneity and tumor recurrence in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andor, N., J.V. Harness, S. Müller, H.W. Mewes, and C. Petritsch. 2014. EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics 30: 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Arita, H., et al. 2013. Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathologica 126: 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Bady, P., et al. 2012. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathologica 124: 547–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahuleyan, B., S. Robinson, A.R. Nair, J.L. Sivanandapanicker, and A.R. Cohen. 2013. Anatomic hemispherectomy: historical perspective. World Neurosurgery 80 (3–4): 396–398. <http://www.ncbi.nlm.nih.gov/pubmed/22480976>.

  • Bao, S., et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Google Scholar 

  • Batzdorf, U., and N. Malamud. 1963. The problem of multicentric gliomas. Journal of Neurosurgery 20: 122–136.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, C.W., et al. 2013. The somatic genomic landscape of glioblastoma. Cell 155: 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broniscer, A., et al. 2014. Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathology and Applied Neurobiology 40: 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos, B., L.R. Olsen, T. Urup, and H.S. Poulsen. 2016. A comprehensive profile of recurrent glioblastoma. Oncogene. doi:10.1038/onc.2016.85.

    Google Scholar 

  • Cancer Genome Atlas Research Network. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  CAS  Google Scholar 

  • Capper, D., H. Zentgraf, J. Balss, C. Hartmann, and A. von Deimling. 2009. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathologica 118: 599–601.

    Article  CAS  PubMed  Google Scholar 

  • Christians, A., et al. 2012. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS One 7: e33449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann, M., et al. 2010. MGMT activity, promoter methylation and immunohistochemistry of pretreatment and recurrent malignant gliomas: a comparative study on astrocytoma and glioblastoma. International Journal of Cancer 127: 2106–2118.

    Article  CAS  PubMed  Google Scholar 

  • Dang, L., et al. 2010. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465 (7300): 966. doi:10.1038/nature09132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov, L., C.S. Hong, C. Yang, Z. Zhuang, and J.D. Heiss. 2015. New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. International Journal of Medical Sciences 12: 201–213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellison, D.W., B.K. Kleinschmidt-DeMasters, and S.-H. Park. 2016. Epitheloid glioblastoma. In WHO classification of tumors of the central nervous system, ed. Webster K. Cavenee, David N. Louis, Hiroko Ohgaki, and Otmar D. Wiestler, 4th ed., 50–51. France: International Agency for Research on Cancer (IARC).

    Google Scholar 

  • Endersby, R., and S.J. Baker. 2008. PTEN signaling in brain: Neuropathology and tumorigenesis. Oncogene 27: 5416–5430.

    Article  CAS  PubMed  Google Scholar 

  • Esteller, M., S.R. Hamilton, P.C. Burger, S.B. Baylin, and J.G. Herman. 1999. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Research 59: 793–797.

    CAS  PubMed  Google Scholar 

  • Fan, Q.-W., et al. 2013. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24: 438–449.

    Article  CAS  PubMed  Google Scholar 

  • Foote, M.B., et al. 2015. Genetic classification of gliomas: Refining histopathology. Cancer Cell 28: 9–11.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, R.J., D.J. Picketts, L. Villard, and D.R. Higgs. 1995. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80: 837–845.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, M.R., et al. 2013. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. Journal of Clinical Oncology 31: 4085–4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillet, E., et al. 2014. TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. Journal of Neuro-Oncology. doi:10.1007/s11060-014-1407-4.

    PubMed  Google Scholar 

  • Goldberg, A.D., et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140: 678–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad, S.F., S.A. Moore, R.L. Schelper, and J.A. Goeken. 1992. Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme. Journal of Neuropathology and Experimental Neurology 51: 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M., R. Grant, R. Garside, et al. 2011. Chemotherapy wafers for high grade glioma. Cochrane Database of Systematic Reviews 16: CD007294.

    Google Scholar 

  • Hatanpaa, K.J., S. Burma, D. Zhao, and A.A. Habib. 2010. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12: 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, J., et al. 2001. Glioblastomas with an oligodendroglial component: a pathological and molecular study. Journal of Neuropathology and Experimental Neurology 60: 863–871.

    Article  CAS  PubMed  Google Scholar 

  • Hegi, M.E., et al. 2005. MGMT gene silencing and benefit from temozolomide in glioblastoma. The New England Journal of Medicine 352: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2008. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. Journal of Clinical Oncology 26: 4189–4199.

    Article  CAS  PubMed  Google Scholar 

  • Heimberger, A.B., et al. 2005. The natural history of EGFR and EGFRvIII in glioblastoma patients. Journal of Translational Medicine 3: 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Homma, T., et al. 2006. Correlation among pathology, genotype, and patient outcomes in glioblastoma. Journal of Neuropathology and Experimental Neurology 65: 846–854.

    Article  CAS  PubMed  Google Scholar 

  • Horn, S., et al. 2013. TERT promoter mutations in familial and sporadic melanoma. Science 339: 959–961.

    Article  CAS  PubMed  Google Scholar 

  • Hygino da Cruz, L.C., I. Rodriguez, R.C. Domingues, E.L. Gasparetto, and A.G. Sorensen. 2011. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. American Journal of Neuroradiology 32: 1978–1985.

    Article  PubMed  Google Scholar 

  • Ilhan-Mutlu, A., et al. 2013. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens. Journal of Neuro-Oncology 112: 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Inda, M.-M., et al. 2010. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes & Development 24: 1731–1745.

    Article  CAS  Google Scholar 

  • Jänne, P.A., J.A. Engelman, and B.E. Johnson. 2005. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. Journal of Clinical Oncology 23: 3227–3234.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, M., S. Yip, and D.N. Louis. 2010. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurology 9: 717–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph, N.M., et al. 2013. Diagnostic implications of IDH1-R132H and OLIG2 expression patterns in rare and challenging glioblastoma variants. Modern Pathology 26: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Kamijo, T., et al. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proceedings of the National Academy of Sciences of the United States of America 95: 8292–8297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan, K., et al. 2012. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3: 1194–1203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Killela, P.J., et al. 2013. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America 110: 6021–6026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., et al. 2015. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 28: 318–328.

    Article  CAS  PubMed  Google Scholar 

  • Kleinschmidt-DeMasters, B.K., D.L. Aisner, and N.K. Foreman. 2015. BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. The American Journal of Surgical Pathology 39: 528–540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koelsche, C., et al. 2013. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica 126: 907–915.

    Article  CAS  PubMed  Google Scholar 

  • Kumabe, T., Y. Sohma, T. Kayama, T. Yoshimoto, and T. Yamamoto. 1992. Overexpression and amplification of alpha-PDGF receptor gene lacking exons coding for a portion of the extracellular region in a malignant glioma. The Tohoku Journal of Experimental Medicine 168: 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, C.-H., et al. 2008. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Research 68: 3286–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, A., et al. 2011. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. Journal of Clinical Oncology 29: 4482–4490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathia, J.D., et al. 2011. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death & Disease 2: e200.

    Article  CAS  Google Scholar 

  • Lee, J.C., et al. 2006. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Medicine 3: e485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis, P.W., S.J. Elsaesser, K.-M. Noh, S.C. Stadler, and C.D. Allis. 2010. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proceedings of the National Academy of Sciences of the United States of America 107: 14075–14080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., et al. 2009. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15: 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X.-Y., et al. 2012. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica 124: 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Loenarz, C., and C.J. Schofield. 2008. Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chemical Biology 4: 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Louis, David N., Hiroko Ohgaki, Otmar D. Wiestler, Webster K. Cavenee, Peter C. Burger, Anne Jouvet, Bernd W. Scheithauer, and Paul Kleihues. 2007. The 2007 WHO Classification of tumours of the central nervous system. Acta Neuropathologica. doi:10.1007/s00401-007-0243-4.

  • Louis, David N., Arie Perry, Guido Reifenberger, Andreas von Deimling, Dominique Figarella-Branger, Webster K. Cavenee, Hiroko Ohgaki, Otmar D. Wiestler, Paul Kleihues, and David W. Ellison. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica 131 (6): 803–820. doi:10.1007/s00401-016-1545-1.

  • Louis, D.N., et al. 2014. International society of neuropathology–haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathology 24: 429–435.

    Google Scholar 

  • Louis, D.N., M.L. Suva, P.C. Burger, A. Perry, P. Kleihues, K.D. Aldape, D.J. Brat, et al. 2016. Glioblastoma, IDH-Wild Type. In WHO classification of tumors of the central nervous system, ed. Webster K. Cavenee, David N. Louis, Hiroko Ohgaki, and Otmar D. Wiestler, 4th ed., 28–45. France: International Agency for Research on Cancer (IARC).

    Google Scholar 

  • Lu, Z., G. Jiang, P. Blume-Jensen, and T. Hunter. 2001. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell. Biol. 21: 4016–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmström, A., et al. 2012. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. The Lancet Oncology 13: 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Mao, H., D.G. Lebrun, J. Yang, V.F. Zhu, and M. Li. 2012. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investigation 30: 48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marko, N.F., and R.J. Weil. 2013. The molecular biology of WHO grade II gliomas. Neurosurgical Focus 34: E1.

    Article  PubMed  Google Scholar 

  • Martinez, R., et al. 2003. Independent molecular development of metachronous glioblastomas with extended intervening recurrence-free interval. Brain Pathology 13: 598–607.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2007. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28: 1264–1268.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, R., V. Rohde, and G. Schackert. 2010. Different molecular patterns in glioblastoma multiforme subtypes upon recurrence. Journal of Neuro-Oncology 96: 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Puttlitz, B., et al. 1997. Molecular genetic analysis of giant cell glioblastomas. The American Journal of Pathology 151: 853–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikeska, T., C. Bock, H. Do, and A. Dobrovic. 2012. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Review of Molecular Diagnostics 12: 473–487.

    Article  CAS  PubMed  Google Scholar 

  • Miller, C.R., C.P. Dunham, B.W. Scheithauer, and A. Perry. 2006. Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. Journal of Clinical Oncology 24: 5419–5426.

    Article  PubMed  Google Scholar 

  • Mosrati, M.A., et al. 2015. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget 6: 16663–16673.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Nifterik, K.A., et al. 2006. Genetic profiling of a distant second glioblastoma multiforme after radiotherapy: Recurrence or second primary tumor? Journal of Neurosurgery 105: 739–744.

    Article  PubMed  Google Scholar 

  • Nishikawa, R., et al. 1994. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America 91: 7727–7731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobusawa, S., T. Watanabe, P. Kleihues, and H. Ohgaki. 2009. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clinical Cancer Research 15: 6002–6007.

    Article  CAS  PubMed  Google Scholar 

  • Nonoguchi, N., et al. 2013. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathologica 126: 931–937.

    Article  CAS  PubMed  Google Scholar 

  • Noushmehr, H., et al. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17: 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgaki, H.P., A. Kleihues, D.N. von Deimling, G. Reifenberger Louis, H. Yan, and M. Weller. 2016. Glioblastoma, IDH-Mutant. In WHO classification of tumors of the central nervous system, ed. Webster K. Cavenee, David N. Louis, Hiroko Ohgaki, and Otmar D. Wiestler. France: Revised 4t, 52 to 56. International Agency for Research on Cancer (IARC).

    Google Scholar 

  • Padfield, E., H.P. Ellis, and K.M. Kurian. 2015. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Frontiers in Oncology 5: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons, D.W., et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltier, J., A. O’Neill, and D.V. Schaffer. 2007. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Developmental Neurobiology 67: 1348–1361.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, H.S., et al. 2006. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9 (3): 157–173. doi:10.1016/j.ccr.2006.02.019.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, J.J., et al. 2013. PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathology 23: 565–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, Shilpa, Palavalasa Sravya, Chitra Chandran, Jitender Saini, Sampath Somanna, and Vani Santosh. 2017. Granular cells in oligodendroglioma suggest a neoplastic change rather than a reactive phenomenon: Case report with molecular characterisation. Brain Tumor Pathology 34 (1): 42–47. doi:10.1007/s10014-016-0273-5.

  • Reis, R.M., et al. 2001. Second primary glioblastoma. Journal of Neuropathology and Experimental Neurology 60: 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, W.D., N. Pringle, M.J. Mosley, B. Westermark, and M. Dubois-Dalcq. 1988. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53: 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Richichi, C., P. Brescia, V. Alberizzi, L. Fornasari, and G. Pelicci. 2013. Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 15: 840–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer, H., and J. Structural. 1938. Development in gliomas. The American Journal of Cancer 34: 333–351.

    Google Scholar 

  • Schumacher, T., et al. 2014. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512: 324–327.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzentruber, J., et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Shih, A.H., and E.C. Holland. 2006. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Letters 232: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Shinojima, N., et al. 2003. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Research 63 (20): 6962–6970.

    CAS  PubMed  Google Scholar 

  • Shinsato, Y., et al. 2013. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget 4: 2261–2270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, X., et al. 2011. Glioblastoma with PNET-like components has a higher frequency of isocitrate dehydrogenase 1 (IDH1) mutation and likely a better prognosis than primary glioblastoma. International Journal of Clinical and Experimental Pathology 4: 651–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegl-Kreinecker, S., et al. 2015. Prognostic quality of activating TERT promoter mutations in glioblastoma: interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro-Oncology. doi:10.1093/neuonc/nov010.

    PubMed  PubMed Central  Google Scholar 

  • Srividya, M.R., et al. 2010. Age-dependent prognostic effects of EGFR/p53 alterations in glioblastoma: Study on a prospective cohort of 140 uniformly treated adult patients. Journal of Clinical Pathology 63: 687–691.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2011. Homozygous 10q23/PTEN deletion and its impact on outcome in glioblastoma: A prospective translational study on a uniformly treated cohort of adult patients. Neuropathology 31: 376–383.

    Article  PubMed  Google Scholar 

  • Stark, A.M., P. Witzel, R.J. Strege, H.-H. Hugo, and H.M. Mehdorn. 2003. p53, mdm2, EGFR, and msh2 expression in paired initial and recurrent glioblastoma multiforme. Journal of Neurology, Neurosurgery, and Psychiatry 74: 779–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, A.M., A. Doukas, H.-H. Hugo, and H.M. Mehdorn. 2010. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurological Research 32: 816–820.

    Article  PubMed  Google Scholar 

  • Stupp, R., et al. 2009. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2014. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology 15: 1100–1108.

    Article  CAS  PubMed  Google Scholar 

  • Switzeny, O.J., et al. 2016. MGMT promoter methylation determined by HRM in comparison to MSP and pyrosequencing for predicting high-grade glioma response. Clinical Epigenetics 8: 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor, J.W., and D. Schiff. 2015. Treatment Considerations for MGMT-Unmethylated Glioblastoma. Current Neurology and Neuroscience Reports 15: 507.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, T.E., F.B. Furnari, and W.K. Cavenee. 2012. Targeting EGFR for treatment of glioblastoma: Molecular basis to overcome resistance. Current Cancer Drug Targets 12: 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thota, B., et al. 2012. IDH1 mutations in diffusely infiltrating astrocytomas. American Journal of Clinical Pathology 138 (2): 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Toledo, F., and G.M. Wahl. 2007. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. The International Journal of Biochemistry & Cell Biology 39: 1476–1482.

    Article  CAS  Google Scholar 

  • Turcan, S., et al. 2012. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaak, R.G.W., et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassenbroeck, I., et al. 2008. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. The Journal of Molecular Diagnostics 10: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., et al. 2012. Glioblastoma with an oligodendroglioma component: distinct clinical behavior, genetic alterations, and outcome. Neuro-Oncology 14: 518–525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, T., S. Nobusawa, P. Kleihues, and H. Ohgaki. 2009. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. The American Journal of Pathology 174 (4): 1149–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, M., et al. 2010. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nature Reviews. Neurology 6: 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Weller, M., M. van den Bent, K. Hopkins, J.C. Tonn, R. Stupp, A. Falini, et al. 2014. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. The Lancet Oncology 15 (9): 395–403.

    Article  Google Scholar 

  • Wick, W., et al. 2014. MGMT testing—the challenges for biomarker-based glioma treatment. Nature Reviews. Neurology 10: 372–385.

    Article  CAS  PubMed  Google Scholar 

  • Wiestler, B., et al. 2013. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathologica 126: 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., et al. 2004. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. The Journal of Biological Chemistry 279: 33946–33957.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., et al. 2009. IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine 360: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., et al. 2016. TERT mutation in glioma: Frequency, prognosis and risk. Journal of Clinical Neuroscience 26: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., et al. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8: 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical and scientific inputs from the Neurooncology team, NIMHANS, Mrs. Hemavathy U and Mr. K Manjunath, Department of Neuropathology, NIMHANS, for the assistance in IHC experiments and contributions towards compiling the images respectively. We are deeply indebted to NMITLI, CSIR and DBT COE programmes for their grants, supporting our research on glioblastoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Santosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Santosh, V., Sravya, P., Arivazhagan, A. (2017). Molecular Pathology of Glioblastoma- An Update. In: Somasundaram, K. (eds) Advances in Biology and Treatment of Glioblastoma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-56820-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56820-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56819-5

  • Online ISBN: 978-3-319-56820-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics