Skip to main content

Expression of Bacillus thuringiensis Toxins in Insect Cells

  • Chapter
  • First Online:
Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

Baculoviruses and Bacillus thuringiensis (Bt) are biological control agents used for the control of agricultural insect pests and also insect vectors of human diseases. The expression of Cry proteins in insect cells using recombinant baculoviruses has been shown to be an alternative means of production of these proteins for functional and/or structural studies. The combination of the insecticidal activity of Bt and baculovirus lethal infection also has the potential to improve viral pathogenicity toward their insect hosts. The easy manipulation of baculovirus genomes and the increased number of full baculovirus genome sequences available could facilitate the expression of Cry proteins and, besides improving their pathogenicity, also retard the development of resistant insects to both Cry proteins and virus replication. In this chapter, the construction of recombinant baculoviruses containing different cry genes (cry1, cry2, cry4, cry10, and cry11) and the expression of the corresponding Cry proteins in insect cells and insect larvae are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaisse H, Lereclus D (1994) Expression in Bacillus subtilis of the Bacillus thuriniengis cryIIIA toxin gene in not dependent on sporulation specific sigma factor and is increased in a spoOA mutant. J Bacteriol 176:4734–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguiar RWS, Martins ÉS, Valicente F, Carneiro NP, Batista AC, Melatti VM, Monnerat RG, Ribeiro BM (2006) A recombinant truncated Cry1Ca protein is toxic to lepidopteran insects and forms large cuboidal crystals in insect cells. Curr Microbiol 53:287–292

    Article  CAS  PubMed  Google Scholar 

  • Aguiar RWS, Martins ÉS, Ribeiro BM, Monnerat RG (2012) Cry10Aa protein is highly toxic to Anthonomus grandis Boheman (Coleoptera: Curculionidae), an important insect pest in Brazilian cotton crop fields. Bt Res 3:20–28

    Google Scholar 

  • Ardisson-Araújo DMP, Pereira BT, Melo FL, Ribeiro BM, Báo SN, Zanotto PMA, Moscardi F, Kitajima EW, Sosa-Gomez DR, Wolff JLC (2016) A betabaculovirus encoding a gp64 homolog. BMC Genomics 17:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrão HBM, Silva-Filha MHN (2007) Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol Lett 266:163–169

    Article  Google Scholar 

  • Berry C, O’neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, MTG H, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberon M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantón PE, Reyes EZ, Escudero IR, Bravo A, Soberón M (2010) Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1A has an important role in synergism. Peptides 32:595–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  PubMed  Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80:329–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang C, Yu YM, Dai SM, Law SK, Gill SS (1993) High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol 59:815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JH, Choi JY, Jin BR, Roh JY, Olszewski A, Seo SJ, O’Reilly DR, Je YH (2003) An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol 84:30–37

    Article  CAS  PubMed  Google Scholar 

  • Chungiatupornchai W, Hofte H, Seurink J, Angsuthanasombat C, Vaeck M (1988) Common features of Bacillus thuringiensis toxins specific for diptera and lepidoptera. Eur J Biochem 173:9–16

    Article  Google Scholar 

  • Corrêa RFT, Ardisson-Araujo DMP, Monnerat RG, Ribeiro BM (2012a) Cytotoxicity analysis of three Bacillus thuringiensis subsp. israelensis δ endotoxins towards insect and mammalian cells. PLoS One 7:e46121

    Article  Google Scholar 

  • Corrêa RFT, Ardisson-Araújo DMP, Monnerat RG, Ribeiro BM (2012b) Cytotoxicity analysis of three Bacillus thuringiensis Subsp. israelensis δ-Endotoxins towards insect and mammalian cells. In: Bravo A (ed) PLoS One 7(9):e46121. doi:10.1371/journal.pone.0046121

  • Corrêa RFT, Aguiar RWS, Monnerat RG, Ribeiro BM (2013) Cry 4Aa and Cry4Ba from Bacillus thuringiensis subsp. israelensis expressed in insect cells by recombinant baculoviruses are toxic to Aedes aegypti larvae. Virus Rev Res 18:1–10

    Article  Google Scholar 

  • Crickmore N, Ellar D (1992) Involvement of a possible chaperonin in the efficient expression of a cloned CryIIIA δ-endotoxin gene in Bacillus thuringiensis. Mol Microbiol 6:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature of the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler DR (2016) Bacillus thuringiensis toxin nomenclature. Available on line http://www.btnomenclature.info/

  • Dankocsik C, Donovan WP, Iany CS (1990) Activation of a cryptic crystal protein gene of Bacillus thruingiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol Microbiol 4:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Datal NG, Bentley WE, Cha HJ (2005) Facile monitoring of baculovirus infection for foreign protein expression under very late polyhedrin promoter using green fluorescent protein reporter under early-to-late promoter. Biochem Eng J 24:27–30

    Article  Google Scholar 

  • Donovan WP, Engleman JT, Donovan JC, Baum JA, Bunkers GJ, Chi DJ, Clinton WP, English L, Heck GR, Ilagan OM, Krasomil-Osterfeld KC, Pitkin JW, Roberts JK, Walters MR (2006) Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl Microbiol Biotechnol 72:713–719

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen PD (1997) Regulation of baculovírus early gene expression. In: Miller LK (ed) The baculoviruses. Plenum Prest, New York

    Google Scholar 

  • Funk CJ, Braunagel SC, Rohrmann G (1997) Baculovirus structure. In: Miller LK (ed) The baculoviruses. Plenum Prest, New York

    Google Scholar 

  • Gouffon C, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL (2011) Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl Environ Microbiol 77:3182–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas-Stapleton EJ, Washburn JO, Volkman LE (2004) P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J Virol 78:6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood JF, Farooq M, Turnwall BT, Richardson AG (2015) Evaluating liquid and granular Bacillus thuringiensis var. israelensis broadcast applications for controlling vectors of dengue and chikungunya viruses in artificial containers and tree holes. J Med Entomol 52:663–671

    Article  PubMed  Google Scholar 

  • Hernandez-Rodriguez CS, Boets A, Van Rie J, Ferré J (2009) Screening and identification of vip genes in Bacillus thuringiensis strains. J Appl Microbiol 107:219–225

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Soto A, Del Rincón-Castro MC, Espinoze AM, Ibarra JE (2009) Parasporal body formation via overexpression of the Cry1Aa toxin of Bacillus thuringiensis subsp. Israelensis, and Cry10Aa-Cyt1Aa synergism. Appl Environ Microbiol 75:4661–4667

    Article  PubMed  PubMed Central  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal protein of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  PubMed Central  Google Scholar 

  • Horton HM, Burand JP (1993) Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 67:1860–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PA, Stevens MM, Park HW, Federici BA (2005) Response of larval Chironomus tepperi (Diptera: Chironomidae) to individual Bacillus thuringiensis var. israelensis toxins and toxin mixtures. J Invertebr Pathol 88:34–39

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DL (1997) Baculovirus expression vectors. In: Miller LK (ed) The baculovirus. Plenum, New York

    Google Scholar 

  • Jarvis DL (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lima, GMS (2009) Toxinas recombinantes Cry2Aa e Cry11Aa de Bacillus thuringiensis expressas em células de inseto são tóxicas para larvas de Lepidoptera e Diptera. UnB, Brasília, 2009. 105p. PhD Thesis. Avalilable at http://repositorio.unb.br/bitstream/10482/4572/1/2009_GlauciaManoelladeSouzaLima.pdf

  • Lima GMS, Aguiar RWS, Correa RFT, Martins ÉS, Gomes ACMM, Nagata T, Souza MT, Monnerat RG, Ribeiro BM (2008) Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World J Microbiol Biotechnol 24:2941–2948

    Article  CAS  Google Scholar 

  • Lu A, Miller LK (1997) Regulation of baculovirus late and very late gene expression. In: Miller LK (ed) The baculovirus. Plenum Prest, New York

    Google Scholar 

  • Manasherob R, Zaritsky A, Ben-Dov E, Saxena D, Barak Z, Einav M (2001) Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis in Escherichia coli. Curr Microbiol 43:355–364

    Article  CAS  PubMed  Google Scholar 

  • Martens JW, Honee G, Zuidema D, Van Lent JWM, Visser B, Vlak JM (1990) Insecticidal activity of a bacterial crystal protein expressed by a recombinant baculovirus in insect cells. Appl Environ Microbiol 56:2764–2770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JWM, Knoester M, Weijts F, Groffen SJA, Hu Z, Bosch D, Vlak JM (1995) Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis Cry1A(b) crystal proteins. J Invertebr Pathol 66:249–257

    Article  CAS  PubMed  Google Scholar 

  • Martins ES, Praça LB, Dumas VF, Silva-Werneck JO, Sone EH, Waga IC, Berry C, Monnerat RG (2007) Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil (Anthonomus grandis). Biol Control 40:65–68

    Article  CAS  Google Scholar 

  • Martins ES, Aguiar RW, Martins NF, Melatti VM, Falcão R, Gomes ACM, Ribeiro BM, Monnerat RG (2008) Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol 104:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Martins ES, Monnerat RG, Queiroz PR, Dumas VF, Braz SV, Aguiar RWS, Gomes ACMM, Sánchez J, Bravo A, Ribeiro BM (2010) Midgut GPI- anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) can be the putative receptors for the Cry1B protein of Bacillus thuringiensis. Insect Biochem Mol Biol 40:138–145

    Article  CAS  PubMed  Google Scholar 

  • Maruniak JE (1986) Baculovirus structural proteins and protein synthesis. In: Granados RR, Frederici BA (eds) The biology of Baculovirus, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Merryweather AT, Weyer U, Harris MPG, Hirst M, Booth T, Possee RD (1990) Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. Kurstaki HD-73 delta-endotoxin. J Gen Virol 71:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Miller LK (1997) Introduction to the baculoviruses. In: Miller LK (ed) The baculoviruses. Plenum Prest, New York

    Chapter  Google Scholar 

  • Monnerat RG, Bravo A (2000) Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: modo de ação e resistência. In: Melo IS, Azevedo JL (eds) Controle Biológico. Jaguariúna, Embrapa Meio Ambiente

    Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly DR, Miller LK, Luckow V (1992) Baculovirus expression vectors: a laboratory manual. W. H. Fressman and Company, New York

    Google Scholar 

  • Ohba M, Mizuki E, Uemori A (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res 29:427–433

    CAS  PubMed  Google Scholar 

  • Okumura S, Ohba M, Mizuki E, Crickmore N, Coté J-C, Nagamatsu Y, Kitada S, Sakai H, Harata K, Shin T, Okumura S (2016) Parasporin nomenclature. Available online: http://parasporin.fitc.pref.fukuoka.jp/

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Frutos R, Federici BA (1992) Synthesis and toxicity of full length and truncated bacterial CryIVD mosquitocidal proteins expressed in lepidopteran cells a baculovırus vector. J Gen Virol 73:89–101

    Article  CAS  PubMed  Google Scholar 

  • Pérez C, Fernandez LE, Sun J, Folch JL, Gill SS, Soberón M, Bravo A (2005) Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci U S A 102:18303–18308

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Bio/Technology 8:939–943

    Article  CAS  PubMed  Google Scholar 

  • Poncet S, Delecluse A, Klier A, Rapoport G (1995) Evaluation of synergistic interactions among the CryIVA, CryIVB and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. J Invertebr Pathol 66:131–135

    Article  CAS  Google Scholar 

  • Ribeiro BM, Crook NE (1993) Expression of full length and truncated forms of crystal protein genes from Bacillus thuringiensis subsp. kurstaki in baculovirus and pathogenicity of the recombinant viruses. J Invertebr Pathol 62:121–130

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro BM, Crook NE (1998) Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis. Braz J Med Biol Res 31:763–769

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro BM, Morgado FS, Ardisson-Araújo DMP, Silva LA, Cruz FSP, Chaves LCS, Quirino MS, Andrade MS, Corrêa RFT (2015) Baculovirus para expressão de proteínas recombinantes em células de inseto. In: Resende RR (ed) Biotecnologia aplicada à saúde, vol 2. Blucher, São Paulo

    Google Scholar 

  • Rohrmann GF (1986) Polyhedrin structure. J Gen Virol 67:1499–1513

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. National Center for Biotechnology Information (US), Bethesda. Available on line: http://www.ncbi.nlm.nih.gov/books/NBK114593

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GE, Summers MD (1978) Analysis of baculovirus genomes with restriction endonucleases. Virology 89:517–527

    Article  CAS  PubMed  Google Scholar 

  • Thomas WE, Ellar DJ (1983) Bacillus thuringiensis var. israelensis crystalendotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 60:181–197

    CAS  PubMed  Google Scholar 

  • Warren GW, Koziel MG, Mullins MA, Nye GJ, Carr B, Desai NM, Kostichka K, Duck NB, Estruch JJ (1998) Auxiliary proteins for enhancing the insecticidal activity of pesticidal proteins. U.S. Patent 5: 696–770.

    Google Scholar 

  • Widner WR, Whiteley HR (1989) Two highly related crystal proteins of Bacillus thuringiensis serovar kurstaki possess different host range specificities. J Bacteriol 171:965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagiwa M, Ogawa R, Yasuda K, Natsuyama H, Sen K, Sakai H (2002) Active form of dipteran-specific insecticidal protein Cry11A produced by Bacillus thuringiensis subsp. israelensis. Biosci Biotechnol Biochem 66:516–522

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bergmann Morais Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ribeiro, B.M., Martins, É.S., de Souza Aguiar, R.W., Corrêa, R.F.T. (2017). Expression of Bacillus thuringiensis Toxins in Insect Cells. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_8

Download citation

Publish with us

Policies and ethics