Skip to main content

Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Abstract

Principles of plasma electrolytic oxidation of the aluminum and titanium alloys in diphosphate electrolytes are discussed. It has been established that a variation in concentration of the electrolyte components and PEO parameters (current density and treatment time) provides the formation of oxide coatings consisting of the basic matrix materials and the transition metals’ oxides of different compositions and morphologies that are expected to affect their functional properties. Mixed oxide coatings formed in a PEO mode characterized by microglobular structure with reducing the conglomerate size have an increased abrasion and wear resistance and an intense catalytic activity. Thus, there is a prospect of using such coatings in the process of burning fuel in internal combustion engines which reduce the toxicity of emissions improving fuel efficiency and environmental performance of engines and in the industrial systems of catalytic purification of exhaust gases of industrial plants and power system facilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gardiner WC (1984) Combustion chemistry. Springer, New York

    Book  Google Scholar 

  2. Fong KF, Lee CK (2015) Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong. Appl Energy 160:793–801. doi:10.1016/j.apenergy.2014.11.059

    Article  Google Scholar 

  3. Stiles AB (1987) Catalyst supports and supported catalysts: theoretical and applied concepts. Butterworth, Stoneham

    Google Scholar 

  4. Sakhnenko ND, Ved MV, Vestfrid YV, Stepanova II (1996) Predicting the catalytic activity of metal oxide systems in treatment of exhaust gases to remove nitrogen oxides. Russ J Appl Chem 69(9):1346–1350

    Google Scholar 

  5. Glazoff MV, Zolotorevsky VS, Belov NA (2007) Casting aluminum alloys. Elsiever, Oxford

    Google Scholar 

  6. Sakhnenko ND, Ved’ MV, Androshchuk DS, Korniу SA (2016) Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surf Eng Appl Electrochem 52(2):145–151. doi:10.3103/S1068375516020113

    Article  Google Scholar 

  7. Ved’ MV, Sakhnenko ND, Bogoyavlenska OV, Nenastina TO (2008) Modeling of the surface treatment of passive metals. Mater Sci 44(1):79–86. doi:10.1007/s11003-008-9046-6

    Article  Google Scholar 

  8. Barros AD (2010) Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications. Microelectron Eng 87(3):443–446. doi:10.1016/j.mee.2009.06.020

    Article  Google Scholar 

  9. Sakhnenko ND, Ved MV, Karakurkchi FV, Galak AV (2016) A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. East Eur J Enterp Technol 3(5(81)):37–43. doi:10.15587/1729-4061.2016.69390

    Google Scholar 

  10. Yerokhin A, Khan RHU (2010) Anodising of light alloys. In: Dong H (ed) Surface engineering of light alloys: aluminium. Magnesium and Titanium Alloys. Woodhead Publishing Ltd, Cambridge, pp 83–109

    Chapter  Google Scholar 

  11. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122(2–3):73–93. doi:10.1016/s0257-8972(99)00441-7

    Article  Google Scholar 

  12. Rudnev VS, Lukiyanchuk IV, Vasilyeva MS, Sergienko NV (2016) Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surf Coat Technol 307(Part C):1219–1235. doi:10.1016/j.surfcoat.2016.07.060

    Article  Google Scholar 

  13. Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Electrolytic plasma technology: science and engineering – an overview. Surf Coat Technol 201(21):8746–8760. doi:10.1016/j.surfcoat.2006.11.023

    Article  Google Scholar 

  14. Krishna LR, Somaraju KRC, Sundararajan G (2003) The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surf Coat Technol 163–164:484–490. doi:10.1016/s0257-8972(02)00646-1

    Article  Google Scholar 

  15. Wu H, Zhang X, Geng Z, Yin Y, Hang R, Huang X, Yao X, Tang B (2014) Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings. Appl Surf Sci 308:43–49. doi:10.1016/j.apsusc.2014.04.081

    Article  ADS  Google Scholar 

  16. Terleeva OP, Belevantsev VI, Slonova AI (2006) Comparison analysis of formation and some characteristics of microplasma coatings on aluminum and titanium alloys. Prot Met 42(3):272–278. doi:10.1134/s0033173206030106

    Article  Google Scholar 

  17. Umar AA, Rahman MYA, Saad SKM (2013) Preparation of grass-like TiO2 nanostructure thin films: effect of growth temperature. Appl Surf Sci 270:109–114. doi:10.1016/j.apsusc.2012.12.128

    Article  ADS  Google Scholar 

  18. Sakhnenko ND, Ovcharenko OA, Ved’ MV (2015) Electrochemical synthesis of nickel-based composite materials modified with nanosized aluminum oxide. Russ J Appl Chem 88(2):267–271. doi:10.1134/S1070427215020123

    Article  Google Scholar 

  19. Glushkova M, Bairachna T, Ved’ M, Sakhnenko M (2013) Electrodeposited cobalt alloys as materials for energy technology. MRS Proc 1491:18–23. doi:10.1557/opl.2012.1672

    Article  Google Scholar 

  20. Kassman Å, Iacobson S, Ericson L, Hedenqvist P, Olsson M (1991) A new test method for the intrinsic abrasion resistance of thin coatings. Surf Coat Technol 50(1):75–84. doi:10.1016/0257-8972(91)90196-4

    Article  Google Scholar 

  21. Mchardy J, Ludwig F (1992) Electrochemistry of semiconductors and electronics: processes and devices. Noyes, Park Ridge

    Google Scholar 

  22. Pergament A, Stefanovich G, Malinenko V, Velichko A (2015) Electrical switching in thin film structures based on transition metal oxides. Adv Condens Matter Phys 2015. doi:10.1155/2015/654840

    Google Scholar 

  23. Patil V, Joshi P, Chougule M, Sen S (2012) Synthesis and characterization of Co3O4, thin film. Soft Nanosci Lett 2:1–7. doi:10.4236/snl.2012.21001

    Article  Google Scholar 

  24. Sillen LG, Martell AE (1965) Stability constants of metal-ion complexes. J Chem Educ 42(9):521. doi:10.1021/ed042p521.1

    Google Scholar 

  25. Ved’ MV, Sakhnenko ND, Shtefan VV, Lyon SB, Oleinyk SV, Bilyi LM (2008) Computer modeling of the nonchromate treatment of aluminum alloys by neural networks. Mater Sci 44(2):216–221. doi:10.1007/s11003-008-9066-2

    Article  Google Scholar 

  26. Ivanova ND, Ivanov SV, Boldyrev EI, Sokol’skiiI GV, Makeeva S (2002) High-performance manganese oxide catalysts for CO oxidation. Russ J Appl Chem 75(9):1452–1455. doi:10.1023/A:1022216626347

    Article  Google Scholar 

  27. Vasilyeva MS, Rudnev VS (2014) Composition, surface structure and catalytic properties of manganese- and cobalt-containing oxide layers on titanium. Adv Mater Res 875–877:351–355. doi:10.4028/www.scientific.net/amr.875-877.351

    Article  Google Scholar 

  28. Cherniayeva O, Lunarska E, Sakhnenko N, Ved M (2009) Modyfikacja powierzchni tytanu metoda elektrochemiczno plazmowa. Inzinieria Materialowa 5:298–301

    Google Scholar 

  29. Snytnikov PV, Belyaev VD, Sobyanin VA (2007) Kinetic model and mechanism of the selective oxidation of CO in the presence of hydrogen on platinum catalysts. Kinet Catal 48(1):93–102. doi:10.1134/s0023158407010132

    Article  Google Scholar 

  30. Lunarska E, Cherniayeva O, Ved M, Sakhnenko N (2007) Oxide film formed on Ti by the microark anodic method. Ochrona przed Korozja 11A:65–269

    Google Scholar 

  31. Krishna DSR, Sun Y (2005) Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Appl Surf Sci 252(4):1107–1116. doi:10.1016/j.apsusc.2005.02.046

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay D. Sakhnenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sakhnenko, N.D., Ved, M.V., Karakurkchi, A.V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_38

Download citation

Publish with us

Policies and ethics