Skip to main content

White Matter Disease

  • Chapter
  • First Online:
Stroke Genetics

Abstract

Cerebral white matter (WM) plays a fundamental role in transmitting electrical signals between the neurons; thus, any disorder affecting structural or functional integrity of the WM is bound to present with diverse neurological manifestations. The range of neurological dysfunction varies greatly from relentless failure to thrive in a spectrum of pediatric leukodystrophies to subtle cognitive decline in the elderly with leukoaraiosis. Pathophysiology of these disorders is heterogeneous, but invariably there is a known genetic contribution ranging from monogenetic disorders such as metachromatic and globoid cell leukodystrophies, adrenoleukodystrophy, leukoencephalopathy with vanishing WM disease in the pediatric population to common genetic risk factors in the elderly. In this chapter, we will explore the neurogenetics of sporadic WM disease caused by cerebrovascular pathology, which has been linked to risk of ischemic and hemorrhagic strokes. This subtype of WM disease, also known as WM lesions (WMLs), WM hyperintensity (WMH), or leukoaraiosis, has been described in the context of epidemiological studies of aging adults with subtle, but progressive, signs of neurological dysfunction and manifest clinical cerebrovascular disease. This chapter will discuss how genetic analysis applies to a spectrum of cerebrovascular WM diseases, outline the current state of knowledge, and delineate the potential implications for future research and neurological practice in the new era of genetic discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F. Progression of cerebral white matter lesions: 6-year results of the Austrian stroke prevention study. Lancet. 2003;361(9374):2046.

    Article  PubMed  Google Scholar 

  2. Turner ST, Jack CR, Fornage M, Mosley TH, Boerwinkle E, de Andrade M. Heritability of leukoaraiosis in hypertensive sibships. Hypertension. 2004;43(2):483–7.

    Article  CAS  PubMed  Google Scholar 

  3. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schmidt R, Fazekas F, Kapeller P, Schmidt H, Hartung HP. MRI white matter hyperintensities: three-year follow-up of the Austrian stroke prevention study. Neurology. 1999;53(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  5. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652–9.

    Article  CAS  PubMed  Google Scholar 

  6. Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham heart study. Arch Neurol. 2006;63(2):246–50.

    Article  PubMed  Google Scholar 

  7. Callisaya ML, Beare R, Phan T, Blizzard L, Thrift AG, Chen J, et al. Progression of white matter hyperintensities of presumed vascular origin increases the risk of falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70(3):360–6.

    Article  PubMed  Google Scholar 

  8. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71(11):804–11.

    Article  PubMed  Google Scholar 

  9. Longstreth WT, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke. 1996;27(8):1274–82.

    Article  PubMed  Google Scholar 

  10. Avet J, Pichot V, Barthélémy JC, Laurent B, Garcin A, Roche F, et al. Leukoaraiosis and ambulatory blood pressure load in a healthy elderly cohort study: the PROOF study. Int J Cardiol. 2014 Mar 1;172(1):59–63.

    Article  PubMed  Google Scholar 

  11. de Leeuw FE, de Groot JC, Bots ML, Witteman JC, Oudkerk M, Hofman A, et al. Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. J Neurol. 2000;247(4):291–6.

    Article  PubMed  Google Scholar 

  12. Lee SJ, Kim JS, Chung SW, Kim BS, Ahn KJ, Lee KS. White matter hyperintensities (WMH) are associated with intracranial atherosclerosis rather than extracranial atherosclerosis. Arch Gerontol Geriatr. 2011;53(2):e129–32.

    Article  PubMed  Google Scholar 

  13. Hassan A, Hunt BJ, O’Sullivan M, Bell R, D’Souza R, Jeffery S, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain. 2004;127(Pt 1):212–9.

    Article  PubMed  Google Scholar 

  14. Wright CB, Paik MC, Brown TR, Stabler SP, Allen RH, Sacco RL, et al. Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan study. Stroke. 2005;36(6):1207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knopman DS, Penman AD, Catellier DJ, Coker LH, Shibata DK, Sharrett AR, et al. Vascular risk factors and longitudinal changes on brain MRI: the ARIC study. Neurology. 2011;76(22):1879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichikawa H, Mukai M, Ohno H, Shimizu Y, Itaya K, Kawamura M. Deep white matter hyperintensities, decreased serum low-density lipoprotein, and dilative large arteriopathy. J Stroke Cerebrovasc Dis. 2012;21(3):225–30.

    Article  PubMed  Google Scholar 

  17. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham study. Stroke. 2004;35(8):1857–61.

    Article  PubMed  Google Scholar 

  18. Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F. Progression of cerebral white matter lesions: 6-year results of the Austrian stroke prevention study. Lancet. 2003;361(9374):2046–8.

    Article  PubMed  Google Scholar 

  19. Longstreth Jr WT, Arnold AM, Beauchamp Jr NJ, Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular health study. Stroke. 2005;36(1):56–61.

    Article  PubMed  Google Scholar 

  20. Markus HS, Hunt B, Palmer K, Enzinger C, Schmidt H, Schmidt R. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian stroke prevention study. Stroke. 2005;36(7):1410–4.

    Article  CAS  PubMed  Google Scholar 

  21. van Dijk EJ, Prins ND, Vermeer SE, Vrooman HA, Hofman A, Koudstaal PJ, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam scan study. Circulation. 2005;112(6):900–5.

    Article  PubMed  CAS  Google Scholar 

  22. Power MC, Deal JA, Sharrett AR, Jack Jr CR, Knopman D, Mosley TH, et al. Smoking and white matter hyperintensity progression: the ARIC-MRI study. Neurology. 2015;84(8):841–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murray AD, McNeil CJ, Salarirad S, Whalley LJ, Staff RT. Early life socioeconomic circumstance and late life brain hyperintensities–a population based cohort study. PLoS One. 2014;9(2):e88969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. de Groot M, Verhaaren BF, de Boer R, Klein S, Hofman A, van der Lugt A, et al. Changes in normal-appearing white matter precede development of white matter lesions. Stroke. 2013;44(4):1037–42.

    Article  PubMed  Google Scholar 

  25. de Groot M, Ikram MA, Akoudad S, Krestin GP, Hofman A, van der Lugt A, et al. Tract-specific white matter degeneration in aging: the Rotterdam study. Alzheimers Dement. 2015;11(3):321–30.

    Article  PubMed  Google Scholar 

  26. Sedaghat S, Cremers LG, de Groot M, Hoorn EJ, Hofman A, van der Lugt A, et al. Kidney function and microstructural integrity of brain white matter. Neurology. 2015;85(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  27. Sedaghat S, Cremers LG, de Groot M, Hofman A, van der Lugt A, Niessen WJ, et al. Lower microstructural integrity of brain white matter is related to higher mortality. Neurology. 2016;87(9):927–34.

    Article  PubMed  Google Scholar 

  28. Rosano C, Abebe KZ, Aizenstein HJ, Boudreau R, Jennings JR, Venkatraman V, et al. Longitudinal systolic blood pressure characteristics and integrity of white matter tracts in a cohort of very old black and white adults. Am J Hypertens. 2015;28(3):326–34.

    Article  PubMed  Google Scholar 

  29. Wang R, Fratiglioni L, Laukka EJ, Lövdén M, Kalpouzos G, Keller L, et al. Effects of vascular risk factors and APOE ε4 on white matter integrity and cognitive decline. Neurology. 2015;84(11):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Breteler MMB, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JHW, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study. Neurology. 1994;44(7):1246–52.

    Article  CAS  PubMed  Google Scholar 

  31. Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study. Stroke. 1996;27(12):2262–70.

    Article  CAS  PubMed  Google Scholar 

  32. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham study. Stroke. 1991;22(3):312–8.

    Article  CAS  PubMed  Google Scholar 

  33. Khatri M, Wright CB, Nickolas TL, Yoshita M, Paik MC, Kranwinkel G, et al. Chronic kidney disease is associated with white matter hyperintensity volume: the Northern Manhattan study (NOMAS). Stroke. 2007;38(12):3121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ikram MA, Vernooij MW, Hofman A, Niessen WJ, van der Lugt A, Breteler MMB. Kidney function is related to cerebral small vessel disease. Stroke. 2008;39(1):55–61.

    Article  PubMed  Google Scholar 

  35. Valdés Hernández MC, Piper RJ, Bastin ME, Royle NA, Maniega SM, Aribisala BS, et al. Morphologic, distributional, volumetric, and intensity characterization of periventricular hyperintensities. AJNR Am J Neuroradiol. 2014;35(1):55–62.

    Article  PubMed  Google Scholar 

  36. Soriano-Raya JJ, Miralbell J, López-Cancio E, Bargalló N, Arenillas JF, Barrios M, et al. Deep versus periventricular white matter lesions and cognitive function in a community sample of middle-aged participants. J Int Neuropsychol Soc. 2012 Sep;18(5):874–85.

    Article  PubMed  Google Scholar 

  37. Benedictus MR, van Harten AC, Leeuwis AE, Koene T, Scheltens P, Barkhof F, et al. White matter hyperintensities relate to clinical progression in subjective cognitive decline. Stroke. 2015;46(9):2661–4.

    Article  PubMed  Google Scholar 

  38. Wakefield DB, Moscufo N, Guttmann CR, Kuchel GA, Kaplan RF, Pearlson G, et al. White matter hyperintensities predict functional decline in voiding, mobility, and cognition in older adults. J Am Geriatr Soc. 2010;58(2):275–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol. 1986;19:253–62.

    Article  CAS  PubMed  Google Scholar 

  41. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–9.

    Article  CAS  PubMed  Google Scholar 

  42. Fernando MS, O’Brien JT, Perry RH, English P, Forster G, McMeekin W, Slade JY, Golkhar A, Matthews FE, Barber R, Kalaria RN, Ince PG. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol. 2004;30:385–95.

    Article  CAS  PubMed  Google Scholar 

  43. Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, et al. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab. 2014;34(2):228–34.

    Article  PubMed  Google Scholar 

  44. Opherk C, Peters N, Holtmannspotter M, Gschwendtner A, Muller-Myhsok B, Dichgans M. Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke. 2006;37(11):2684–9.

    Article  PubMed  Google Scholar 

  45. Kalaria RN, Viitanen M, Kalimo H, Dichgans M, Tabira T. The pathogenesis of cadasil: an update. J Neurol Sci. 2004;226:35–9.

    Article  CAS  PubMed  Google Scholar 

  46. Haglund M, Englund E. Cerebral amyloid angiopathy, white matter lesions and Alzheimer encephalopathy–a histopathological assessment. Dement Geriatr Cogn Disord. 2002;14(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  47. Tian J, Shi J, Bailey K, Mann DM. Relationships between arteriosclerosis, cerebral amyloid angiopathy and myelin loss from cerebral cortical white matter in alzheimer’s disease. Neuropathol Appl Neurobiol. 2004;30:46–56.

    Article  CAS  PubMed  Google Scholar 

  48. Tuladhar AM, Reid AT, Shumskaya E, de Laat KF, van Norden AG, van Dijk EJ, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke. 2015;46(2):425–32.

    Article  PubMed  Google Scholar 

  49. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury * annex–supplemental online-only content. Stroke. 2006;37(6):1391–8.

    Article  PubMed  Google Scholar 

  50. Shoamanesh A, Preis SR, Beiser AS, Vasan RS, Benjamin EJ, Kase CS, et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham heart study. Neurology. 2015;84(8):825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuller LH, Longstreth Jr WT, Arnold AM, Bernick C, Bryan RN, Beauchamp Jr NJ. White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke. 2004;35(8):1821–5.

    Article  PubMed  Google Scholar 

  52. Wolfson L, Wei X, Hall CB, Panzer V, Wakefield D, Benson RR, et al. Accrual of MRI white matter abnormalities in elderly with normal and impaired mobility. J Neurol Sci. 2005;232(1–2):23.

    Article  PubMed  Google Scholar 

  53. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Koudstaal PJ, Oudkerk M, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61(10):1531–4.

    Article  PubMed  Google Scholar 

  54. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam scan study. Neurology. 2001;56(11):1539–45.

    Article  PubMed  Google Scholar 

  55. O’Brien JT, Firbank MJ, Krishnan MS, van Straaten ECW, van der Flier WM, Petrovic K, et al. White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study. Am J Geriatr Psychiatry. 2006;14(10):834–41.

    Article  PubMed  Google Scholar 

  56. Ay H, Arsava EM, Rosand J, Furie KL, Singhal AB, Schaefer PW, Wu O, Gonzalez RG, Koroshetz WJ, Sorensen AG. Severity of leukoaraiosis and susceptibility to infarct growth in acute stroke. Stroke. 2008;39(5):1409–13.

    Article  PubMed  Google Scholar 

  57. Arsava EM, Rahman R, Rosand J, Lu S, Rost NS, Smith EE, Singhal AB, Lev MH, Furie KL, Koroshetz WJ, Sorensen AG, Ay H. Severity of leukoaraiosis predicts clinical outcome after ischemic stroke. Stroke. 2009;72(16):1403–10.

    CAS  Google Scholar 

  58. Kissela B, Lindsell CJ, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, et al. Clinical prediction of functional outcome after ischemic stroke: the surprising importance of periventricular white matter disease and race. Stroke. 2009;40(2):530–6.

    Article  PubMed  Google Scholar 

  59. Kang HJ, Stewart R, Park MS, Bae KY, Kim SW, Kim JM, Shin IS, Cho KH, Yoon JS. White matter hyperintensities and functional outcomes at 2 weeks and 1 year after stroke. Cerebrovasc Dis. 2013;35(2):138–45.

    Article  PubMed  Google Scholar 

  60. Rost NS, Rahman R, Sonni S, Kanakis A, Butler C, Massasa E, et al. Determinants of white matter hyperintensity volume in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2010;19(3):230–5.

    Article  PubMed  Google Scholar 

  61. Jimenez-Conde J, Biffi A, Rahman R, Kanakis A, Butler C, Sonni S, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke. 2010;41(3):437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke. 2005;36(1):50–5.

    Article  PubMed  Google Scholar 

  63. Rost NS, Rahman RM, Biffi A, Smith EE, Kanakis A, Fitzpatrick K, et al. White matter hyperintensity volume is increased in small vessel stroke subtypes. Neurology. 2010;75(19):1670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenberg SM. Small vessels, big problems. N Engl J Med. 2006;354(14):1451–3.

    Article  CAS  PubMed  Google Scholar 

  65. Leys D, Englund E, Del Ser T, Inzitari D, Fazekas F, Bornstein N, et al. White matter changes in stroke patients. Relationship with stroke subtype and outcome. Eur Neurol. 1999;42(2):67–75.

    Article  CAS  PubMed  Google Scholar 

  66. Hijdra A, Verbeeten Jr B, Verhulst JA. Relation of leukoaraiosis to lesion type in stroke patients. Stroke. 1990;21(6):890–4.

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Wen W, Anstey KJ, Sachdev PS. Prevalence, incidence, and risk factors of lacunar infarcts in a community sample. Neurology. 2009;73(4):266–72.

    Article  PubMed  Google Scholar 

  68. O’Sullivan M. Leukoaraiosis. Pract Neurol. 2008;8(1):26–38.

    Article  PubMed  Google Scholar 

  69. Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry. 2007;78(7):702–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Adib-Samii P, Rost N, Traylor M, Devan W, Biffi A, Lanfranconi S, et al. 17q25 locus is associated with white matter hyperintensity volume in ischemic stroke, but not with lacunar stroke status. Stroke. 2013;44(6):1609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cloonan L, Fitzpatrick KM, Kanakis AS, Furie KL, Rosand J, Rost NS. Metabolic determinants of white matter hyperintensity burden in patients with ischemic stroke. Atherosclerosis. 2015;240(1):149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang CR, Cloonan L, Fitzpatrick KM, Kanakis AS, Ayres AM, Furie KL, et al. Determinants of white matter hyperintensity burden differ at the extremes of ages of ischemic stroke onset. J Stroke Cerebrovasc Dis. 2015;24(3):649–54.

    Article  CAS  PubMed  Google Scholar 

  73. Wardlaw JM, Allerhand M, Doubal FN, Valdes Hernandez M, Morris Z, Gow AJ, et al. Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology. 2014;82(15):1331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nyquist PA, Bilgel MS, Gottesman R, Yanek LR, Moy TF, Becker LC, et al. Extreme deep white matter hyperintensity volumes are associated with African American race. Cerebrovasc Dis. 2014;37(4):244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–81.

    Article  CAS  PubMed  Google Scholar 

  76. Atwood LD, Wolf PA, Heard-Costa NL, Massaro JM, Beiser A, D’Agostino RB, et al. Genetic variation in white matter hyperintensity volume in the Framingham study. Stroke. 2004;35(7):1609–13.

    Article  PubMed  Google Scholar 

  77. Kochunov P, Glahn D, Winkler A, Duggirala R, Olvera RL, Cole S, et al. Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume. Stroke. 2009;40(12):3685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sachdev PS, Thalamuthu A, Mather KA, Ames D, Wright MJ, Wen W, et al. White matter hyperintensities are under strong genetic influence. Stroke. 2016;47(6):1422–8.

    Article  CAS  PubMed  Google Scholar 

  79. Adib-Samii P, Devan W, Traylor M, Lanfranconi S, Zhang CR, Cloonan L, et al. Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke. Stroke. 2015;46(2):348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schmidt R, Schmidt H, Fazekas F, Kapeller P, Roob G, Lechner A, et al. MRI cerebral white matter lesions and paraoxonase PON1 polymorphisms: three-year follow-up of the Austrian stroke prevention study. Arterioscler Thromb Vasc Biol. 2000;20(7):1811–6.

    Article  CAS  PubMed  Google Scholar 

  81. Schmidt R, Schmidt H, Fazekas F, Launer LJ, Niederkorn K, Kapeller P, et al. Angiotensinogen polymorphism M235T, carotid atherosclerosis, and small-vessel disease-related cerebral abnormalities. Hypertension. 2001;38(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  82. Hassan A, Lansbury A, Catto AJ, Guthrie A, Spencer J, Craven C, et al. Angiotensin converting enzyme insertion/deletion genotype is associated with leukoaraiosis in lacunar syndromes. J Neurol Neurosurg Psychiatry. 2002;72(3):343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sierra CCA, Gomez-Angelats E, Poch E, Sobrino J, de la Sierra A. Renin-angiotensin system genetic polymorphisms and cerebral white matter lesions in essential hypertension. Hypertension. 2002;39:343–7.

    Article  CAS  PubMed  Google Scholar 

  84. Hassan A, Gormley K, O’Sullivan M, Knight J, Sham P, Vallance P, et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke. 2004;35(3):654–9.

    Article  CAS  PubMed  Google Scholar 

  85. Henskens LHG, Kroon AA, van Boxtel MPJ, Hofman PAM, de Leeuw PW. Associations of the angiotensin ii type 1 receptor a1166c and the endothelial no synthase g894t gene polymorphisms with silent subcortical white matter lesions in essential hypertension. Stroke. 2005;36:1869–73.

    Article  CAS  PubMed  Google Scholar 

  86. de Leeuw F-ERF, de Groot JC, van Duijn CM, Hofman A, van Gijn J, Breteler MMB. Interaction between hypertension, apoe, and cerebral white matter lesions. Stroke. 2004;35:1057–60.

    Article  PubMed  CAS  Google Scholar 

  87. Assareh AA, Mather KA, Crawford JD, Wen W, Anstey KJ, Easteal S, et al. Renin-angiotensin system genetic polymorphisms and brain white matter lesions in older Australians. Am J Hypertens. 2014;27(9):1191–8.

    Article  PubMed  Google Scholar 

  88. Chou PS, Wu SJ, Kao YH, Chou MC, Tai SY, Yang YH. Angiotensin-converting enzyme insertion/deletion polymorphism is associated with cerebral white matter changes in Alzheimer's disease. Geriatr Gerontol Int. 2016; doi:10.1111/ggi.12815.

    Google Scholar 

  89. Assareh A, Mather KA, Schofield PR, Kwok JBJ, Sachdev PS. The genetics of white matter lesions. CNS Neurosci Ther. 2010;17(5):525–40.

    Article  PubMed  CAS  Google Scholar 

  90. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95.

    Article  CAS  PubMed  Google Scholar 

  91. DeStefano AL, Atwood LD, Massaro JM, Heard-Costa N, Beiser A, Au R, et al. Genome-wide scan for white matter hyperintensity: the Framingham heart study. Stroke. 2006;37(1):77–81.

    Article  PubMed  Google Scholar 

  92. Turner ST, Fornage M, Jack Jr CR, Mosley TH, Kardia SLR, Boerwinkle E, et al. Genomic susceptibility loci for brain atrophy in hypertensive sibships from the GENOA study. Hypertension. 2005;45(4):793–8.

    Article  CAS  PubMed  Google Scholar 

  93. Kochunov P, Glahn D, Lancaster J, Winkler A, Kent JW, Olvera RL, et al. Whole brain and regional hyperintense white matter volume and blood pressure. Stroke. 2010;41(10):2137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–80.

    Article  CAS  PubMed  Google Scholar 

  95. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111:1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.

    Article  CAS  PubMed  Google Scholar 

  97. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES. The common PPARgamma pro12ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.

    Article  CAS  PubMed  Google Scholar 

  98. Tran T, Cotlarciuc I, Yadav S, Hasan N, Bentley P, Levi C, et al. Candidate-gene analysis of white matter hyperintensities on neuroimaging. J Neurol Neurosurg Psychiatry. 2016;87(3):260–6.

    Article  PubMed  Google Scholar 

  99. Rutten-Jacobs LC, Traylor M, Adib-Samii P, Thijs V, Sudlow C, Rothwell PM, et al. Association of MTHFR C677T genotype with ischemic stroke is confined to cerebral small vessel disease subtype. Stroke. 2016;47(3):646–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmidt H, Zeginigg M, Wiltgen M, Freudenberger P, Petrovic K, Cavalieri M, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain. 2011;134(Pt 11):3384–97.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rutten-Jacobs LC, Traylor M, Adib-Samii P, Thijs V, Sudlow C, Rothwell PM, et al. Common NOTCH3 variants and cerebral small-vessel disease. Stroke. 2015;46(6):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rannikmäe K, Davies G, Thomson PA, Bevan S, Devan WJ, Falcone GJ, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology. 2015;84(9):918–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Haffner C, Malik R, Dichgans M. Genetic factors in cerebral small vessel disease and their impact on stroke and dementia. J Cereb Blood Flow Metab. 2016;36(1):158–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. deBakker P, Rosand J. In search of genes for stroke. Lancet Neurol. 2007;6(5):383–4.

    Article  Google Scholar 

  105. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 Mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a Mendelian condition causing stroke and vascular dementia. [Review] [10 refs]. Ann N Y Acad Sci. 1997;826(213):213–7.

    Article  CAS  PubMed  Google Scholar 

  106. Jung HH, Bassetti C, Tournier-Lasserve E, Vahedi K, Arnaboldi M, Arifi VB, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a clinicopathological and genetic study of a Swiss family. J Neurol Neurosurg Psychiatry. 1995;59(2):138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia [see comments]. Nature. 1996;383(6602):707–10.

    Article  CAS  PubMed  Google Scholar 

  108. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, et al. Diagnostic strategies in CADASIL. Neurology. 2002;59(8):1134–8.

    Article  CAS  PubMed  Google Scholar 

  109. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007;6(2):149.

    Article  CAS  PubMed  Google Scholar 

  110. Oberstein SAJL, van den Boom R, Middelkoop HAM, Ferrari MD, Knaap YM, van Houwelingen HC, et al. Incipient CADASIL. Arch Neurol. 2003;60(5):707–12.

    Article  Google Scholar 

  111. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011;122(2):171.

    Article  PubMed  Google Scholar 

  112. Schmidt H, Zeginigg M, Wiltgen M, Freudenberger P, Petrovic K, Cavalieri M, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain. 2011;134(11):3384–97.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dichgans M, Mayer M, Uttner I, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44(5):731–9.

    Article  CAS  PubMed  Google Scholar 

  114. Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004;127(11):2533–9.

    Article  PubMed  Google Scholar 

  115. Opherk C, Gonik M, Duering M, Malik R, Jouvent E, Hervé D, et al. Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL. Stroke. 2014;45(4):968–72.

    Article  PubMed  Google Scholar 

  116. Gesierich B, Opherk C, Rosand J, Gonik M, Malik R, Jouvent E, et al. APOE ɛ2 is associated with white matter hyperintensity volume in CADASIL. J Cereb Blood Flow Metab. 2016;36(1):199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rost NS, Cloonan L, Kanakis AS, Fitzpatrick KM, Azzariti DR, Clarke V, et al. Determinants of white matter hyperintensity burden in patients with Fabry disease. Neurology. 2016;86(20):1880–6.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16(4):481–8.

    Article  CAS  PubMed  Google Scholar 

  119. Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, KÃrppà M, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet. 1998;63(2):447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fujii T, Okuno T, Ito M, Motoh K, Hamazaki S, Okada S, Kusaka H, Mikawa H. CT, MRI, and autopsy findings in brain of a patient with MELAS. Pediatr Neurol. 1990;6(4):253–6.

    Article  CAS  PubMed  Google Scholar 

  121. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2012;44(2):200.

    Article  CAS  Google Scholar 

  122. Axelsson R, Röyttä M, Sourander P, Akesson HO, Andersen O. Hereditary diffuse leucoencephalopathy with spheroids. Acta Psychiatr Scand Suppl. 1984;314:1–65.

    CAS  PubMed  Google Scholar 

  123. Wider C, Van Gerpen JA, DeArmond S, Shuster EA, Dickson DW, Wszolek ZK. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD). Neurology. 2009;72(22):1953–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Freeman SH, Hyman BT, Sims KB, Hedley-Whyte ET, Vossough A, Frosch MP, et al. Adult onset leukodystrophy with neuroaxonal spheroids: clinical, neuroimaging and neuropathologic observations. Brain Pathol. 2009;19(1):39.

    Article  PubMed  Google Scholar 

  125. Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, et al. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging. 2016;43(6):1445–54.

    Article  PubMed  Google Scholar 

  126. Indelicato E, Fanciulli A, Poewe W, Antonini A, Pontieri FE, Wenning GK. Cerebral autoregulation and white matter lesions in Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord. 2015;21(12):1393–7.

    Article  PubMed  Google Scholar 

  127. French CR, Seshadri S, Destefano AL, Fornage M, Arnold CR, Gage PJ, et al. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest. 2014;124(11):4877–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  129. Nishimura DY, Swiderski RE, Alward WL, Searby CC, Patil SR, Bennet SR, et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet. 1998;19(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  130. Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–62.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC). Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2016;15(7):695–707.

    Article  Google Scholar 

  132. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358(12):1240–9.

    Article  CAS  PubMed  Google Scholar 

  133. Meschia JF. Stroke genome-wide association studies: the large numbers imperative. Stroke. 2010;41(4):579–80.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke. 2010;41(4):825–32.

    Article  CAS  PubMed  Google Scholar 

  135. Anderson C, Biffi A, Rahman R, Ross O, Jagiella J, Kissela B, Cole J, Cortellini L, Rost N, Cheng Y, Greenberg S, de Bakker P, Brown R, Brott T, Mitchell B, Broderick J, Worrall B, Furie K, Kittner S, Woo D, Slowik A, Meschia J, Saxena R, Rosand J, On behalf of the International Stroke Genetics Consortium. Common mitochondrial sequence variants in ischemic stroke. Ann Neurol. 2011;69(3):471–80. doi:10.1002/ana.22108. Epub 2010 Sep 13.

    Article  CAS  PubMed  Google Scholar 

  136. Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hofer E, Cavalieri M, Bis JC, DeCarli C, Fornage M, Sigurdsson S, et al. White matter lesion progression: genome-wide search for genetic influences. Stroke. 2015;46(11):3048–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lopez LM, Hill WD, Harris SE, Valdes Hernandez M, Munoz Maniega S, Bastin ME, et al. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities. Stroke. 2015;46(2):341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015 Apr;8(2):398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Traylor M, Zhang CR, Adib-Samii P, Devan WJ, Parsons OE, Lanfranconi S, et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology. 2016;86(2):146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Traylor M, Rutten-Jacobs LC, Thijs V, Holliday EG, Levi C, Bevan S, et al. Genetic associations with white matter hyperintensities confer risk of lacunar stroke. Stroke. 2016;47(5):1174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Goldstein LB. A primer on stroke prevention and treatment: an overview based on AHA/ASA guidelines. Hobonken NJ: Wiley-Blackwell; 2009. 978-1-4051-8651-3.

    Book  Google Scholar 

Download references

Acknowledgments and Funding

Dr. Natalia S. Rost is in part supported by the National Institute of Neurological Disorders and Stroke (NINDS) (K23NS064052, R01NS082285 & R01NS086905) and the Massachusetts General Hospital Dean Institute for Integrative Study of Atrial Fibrillation and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia S. Rost M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Giese, AK., Rost, N.S. (2017). White Matter Disease. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-56210-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56210-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56208-7

  • Online ISBN: 978-3-319-56210-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics