Skip to main content

Prognostic Modeling and Analysis of Tumor Response to Fractionated Radiotherapy for Patients with Squamous Cell Lung Cancer

  • Conference paper
  • First Online:
  • 1801 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Abstract

The efficacy of radiotherapy depends on tumor response to radiation. The purpose of this study is to derive three basic tumor-response parameters from a sequence of measured tumor volumes, and then use these parameters to predict treatment outcome for patients with squamous cell lung cancer. 43 patients were investigated in this study. A tumor kinetic model was iterated daily, following the fractionation scheme of radiation treatment for each patient. By minimizing the difference between the model-predicted tumor regression and the measured changes in tumor volumes, three parameters were calibrated and then used to calculate tumor control probability (TCP). The results showed that the major portion of the patients have tumor doubling time (DT) less than 183 days and half time (HT) for dead cell resolving less than 50 days. The modeling differences from measured tumor volumes were summated over the 43 patients, and the sum reaches its minimum with DT at 90 days and HT at 30 days. The behavior of the kinetic model is stable to DT and HT as the modeling difference has only one minimum within the clinically meaningful ranges for the two parameters. One third of these patients have the cell survival fraction at 12 Gy (SF12) less than 0.1, and 80% of them with SF12 less than 0.6. In summary, kinetic modeling of tumor response may help quantify radiobiological parameters which can be used to predict treatment outcomes for individual patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, L., Alber, M.X., Deasy, J.O., Jackson, A., Jee, K.W.K., Marks, L.B., Martel, M.K., Mayo, C., Moiseenko, V., Nahum, A.E., Niemierko, A., Semenenko, V.A., Yorke, E.D.: The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med. Phys. 39, 1386–1409 (2012)

    Article  Google Scholar 

  • Arai, T., Kuroishi, T., Saito, Y., Kurita, Y., Naruke, T., Kaneko, M.: Tumor doubling time and prognosis in lung cancer patients: evaluation from chest films and clinical follow-up study. Japanese lung cancer screening research group. Japan. J. Clin. Oncol. 24, 199–204 (1994)

    Google Scholar 

  • Bentzen, S.M., Thames, H.D.: Tumor volume and local control probability: clinical data and radiobiological interpretations. Int. J. Radiat. Oncol. Biol. Phys. 36, 247–251 (1996)

    Article  Google Scholar 

  • Bhaumik, K., Jain, V.K.: Mathematical models for optimizing tumour radiotherapy I: a simple two compartment cell-kinetic model for the unperturbed growth of transplantable tumours. J. Biosci. 12, 153–164 (1987)

    Article  Google Scholar 

  • Brahme, A.: Dosimetric precision requirements in radiation therapy. Acta Radiol. Oncol. 23, 379–391 (1984)

    Article  Google Scholar 

  • Brenner, D.J.: Dose, volume, and tumor-control predictions in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 26, 171–179 (1993)

    Article  Google Scholar 

  • Brenner, D.J.: The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 18, 234–239 (2008)

    Article  Google Scholar 

  • Brenner, D.J., Hlatky, L.R., Hahnfeldt, P.J., Huang, Y., Sachs, R.K.: The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat. Res. 150, 83–91 (1998)

    Article  Google Scholar 

  • Carlone, M., Wilkins, D., Raaphorst, P.: The modified linear-quadratic model of Guerrero and Li can be derived from a mechanistic basis and exhibits linear-quadratic-linear behaviour. Phys. Med. Biol. 50, L9–L13 (2005)

    Article  Google Scholar 

  • Chaplain, M.A.J.: Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development. Math. Comp. Mod. 23, 47–87 (1996)

    Article  MATH  Google Scholar 

  • Chvetsov, A.V., Dong, L., Palta, J.R., Amdur, R.J.: Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model. Int. J. Radiat. Oncol. Biol. Phys. 75, 595–602 (2009)

    Article  Google Scholar 

  • Dale, R.G.: The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58, 515–528 (1985)

    Article  Google Scholar 

  • Dawson, A., Hillen, T.: Deriation of the tumor control probability (TCP) from a cell cycle model. Comput. Math. Methods Med. 7, 121–141 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Guerrero, M., Carlone, M.: Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med. Phys. 37, 4173–4181 (2010)

    Article  Google Scholar 

  • Guerrero, M., Li, X.A.: Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys. Med. Biol. 49, 4825–4835 (2004)

    Article  Google Scholar 

  • Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C., Lander, E.S.: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011)

    Article  Google Scholar 

  • Hall, E.J., Giaccia, A.J.: Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia (2012)

    Google Scholar 

  • Hanin, L.G.: Iterated birth and death process as a model of radiation cell survival. Math. Biosci. 169, 89–107 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Hedman, M., Bergqvist, M., Brattstrom, D., Brodin, O.: Fractionated irradiation of five human lung cancer cell lines and prediction of survival according to a radiobiology model. Anticancer Res. 31, 1125–1130 (2011)

    Google Scholar 

  • Hillen, T., Enderling, H., Hahnfeldt, P.: The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75, 161–184 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Z., Mayr, N.A., Yuh, W.T., Lo, S.S., Montebello, J.F., Grecula, J.C., Lu, L., Li, K., Zhang, H., Gupta, N., Wang, J.Z.: Predicting outcomes in cervical cancer: a kinetic model of tumor regression during radiation therapy. Cancer Res. 70, 463–470 (2010)

    Article  Google Scholar 

  • Lim, K., Chan, P., Dinniwell, R., Fyles, A., Haider, M., Cho, Y.B., Jaffray, D., Manchul, L., Levin, W., Hill, R.P., Milosevic, M.: Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 70, 126–133 (2008)

    Article  Google Scholar 

  • Okumura, Y., Ueda, T., Mori, T., Kitabatake, T.: Kinetic analysis of tumor regression during the course of radiotherapy. Strahlentherapie 153, 35–39 (1977)

    Google Scholar 

  • Sachs, R.K., Brenner, D.J.: The mechanistic basis of the linear-quadratic formalism. Med. Phys. 25, 2071–2073 (1998)

    Article  Google Scholar 

  • Sachs, R.K., Hlatky, L.R., Hahnfeldt, P.: Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math. Comput. Model. 33, 1297–1305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Sofia, V.I., Martins, L.R., Imaizumi, N., Nunes, R.J., Rino, J., Kuonen, F., Carvalho, L.M., Ruegg, C., Grillo, I.M., Barata, J.T., Mareel, M., Santos, S.C.: Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS One 5, e11222 (2010)

    Article  Google Scholar 

  • Toma-Dasu, I., Dasu, A.: Modelling tumour oxygenation, reoxygenation and implications on treatment outcome. Comput. Math. Methods Med. 2013, 141087 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Usuda, K., Saito, Y., Sagawa, M., Sato, M., Kanma, K., Takahashi, S., Endo, C., Chen, Y., Sakurada, A., Fujimura, S.: Tumor doubling time and prognostic assessment of patients with primary lung cancer. Cancer 74, 2239–2244 (1994)

    Article  Google Scholar 

  • Visvader, J.E., Lindeman, G.J.: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008)

    Article  Google Scholar 

  • Webb, S., Nahum, A.E.: A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys. Med. Biol. 38, 653–666 (1993)

    Article  Google Scholar 

  • Webb, S.: Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys. Med. Biol. 39, 1895–1914 (1994)

    Article  Google Scholar 

  • Wilson, D.O., Ryan, A., Fuhrman, C., Schuchert, M., Shapiro, S., Siegfried, J.M., Weissfeld, J.: Doubling times and CT screen-detected lung cancers in the Pittsburgh lung screening study. Am. J. Respir. Crit. Care Med. 185, 85–89 (2012)

    Article  Google Scholar 

  • Zaider, M., Minerbo, G.N.: Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol. 45, 279–293 (2000)

    Article  Google Scholar 

  • Zhong, H., Chetty, I.: A note on modeling of tumor regression for estimation of radiobiological parameters. Med. Phys. 41, 081702 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the National Institutes of Health Grant No. R01 CA140341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualiang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhong, H., Sharifi, H., Li, H., Mao, W., Chetty, I.J. (2017). Prognostic Modeling and Analysis of Tumor Response to Fractionated Radiotherapy for Patients with Squamous Cell Lung Cancer. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics