Skip to main content

Machine Learning for Critical Care: An Overview and a Sepsis Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Abstract

Biology in general and medicine and healthcare in particular are facing the critical challenge of exponentially increasing data availability. The core of this challenge is putting these data to work through computer-based knowledge extraction methods. In the medical context this could take the form of medical decision support systems for diagnosis, prognosis or general management. Arguably, one of the most data dependent clinical environments is the critical care unit and by extension the whole area of critical care. Fresh approaches to data analysis in critical care are required, and Computational Intelligence and Machine Learning methods have already shown their usefulness in tackling problems in the area. This brief paper aims to be an introduction to the use of such methods in critical care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marx, V.: Biology: the big challenges of big data. Nature 498(7453), 255–260 (2013)

    Article  Google Scholar 

  2. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania, R., Schaeffer, M., St Pierre, S., Twigger, S.: Big data: the future of biocuration. Nature 455(7209), 47–50 (2008)

    Article  Google Scholar 

  3. Fieschi, M., Dufour, J.C., Staccini, P., Gouvernet, J., Bouhaddou, O.: Medical decision support systems: old dilemmas and new paradigms. Methods Inf. Med. 42(3), 190–198 (2003)

    Google Scholar 

  4. Bates, D.W., Kuperman, G.J., Wang, S., Gandhi, T., Kittler, A., Volk, L., Spurr, C., Khorasani, R., Tanasijevic, M., Middleton, B.T.: Commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10(6), 523–530 (2003)

    Article  Google Scholar 

  5. Sittig, D.F., Wright, A., Osheroff, J.A., Middleton, B., Teich, J.M., Ash, J.S., Campbell, E., Bates, D.W.: Grand challenges in clinical decision support. J. Biomed. Inform. 41(2), 387–392 (2008)

    Article  Google Scholar 

  6. Belle, A., Kon, M.A., Najarian, K.: Biomedical informatics for computer-aided decision support systems: a survey. Sci. World J. (2013). Article ID 769639

    Google Scholar 

  7. Wilk, S., Michalowski, W., O’Sullivan, D., Farion, K., Sayyad-Shirabad, J., Kuziemsky, C., Kukawka, B.: A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department. Methods Inf. Med. 52(1), 18–32 (2013)

    Article  Google Scholar 

  8. Lisboa, P.J., Taktak, A.F.G.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw. 19(4), 408–415 (2006)

    Article  MATH  Google Scholar 

  9. Neill, D.B.: Using artificial intelligence to improve hospital inpatient care. IEEE Intell. Syst. 28(2), 92–95 (2013)

    Article  MathSciNet  Google Scholar 

  10. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  11. Min, S., Lee, B., Yoon, S.: Deep Learning in Bioinformatics. Brief. Bioinform., bbw068 (2016)

    Google Scholar 

  12. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321–332 (2015)

    Article  Google Scholar 

  13. Leung, M.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2016)

    Article  Google Scholar 

  14. Lisboa, P.J.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15(1), 11–39 (2002)

    Article  Google Scholar 

  15. Wagholikar, K.B., Sundararajan, V., Deshpande, A.W.: Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36(5), 3029–3049 (2012)

    Article  Google Scholar 

  16. Vasilakos, A.V., Tang, Y., Yao, Y.: Neural networks for computer-aided diagnosis in medicine: a review. Neurocomputing 216, 700–708 (2016)

    Article  Google Scholar 

  17. Vellido, A., Lisboa, P.J.G.: Neural networks and other machine learning methods in cancer research. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 964–971. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73007-1_116

    Chapter  Google Scholar 

  18. Lisboa, P.J.G., Vellido, A., Tagliaferri, R., Napolitano, F., Ceccarelli, M., Martín-Guerrero, J.D., Biganzoli, E.: Data mining in cancer research. IEEE Comput. Intell. Mag. 5(1), 14–18 (2010)

    Article  Google Scholar 

  19. Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., de Mendonça, A.: Data mining methods in the prediction of Dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 4(1), 299 (2011)

    Article  Google Scholar 

  20. Iniesta, R., Stahl, D., McGuffin, P.: Machine learning, statistical learning and the future of biological research in psychiatry. Psychol. Med. 46(12), 2455–2465 (2016)

    Article  Google Scholar 

  21. Pouliakis, A., Karakitsou, E., Margari, N., Bountris, P., Haritou, M., Panayiotides, J., Koutsouris, D., Karakitsos, P.: Artificial neural networks as decision support tools in cytopathology: past, present, and future. Biomed. Eng. Comput. Biol. 7, 1 (2016)

    Article  Google Scholar 

  22. Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D.: Machine learning and decision support in critical care. Proc. IEEE 104(2), 444–466 (2016)

    Article  Google Scholar 

  23. Hanson, C.W., Marshall, B.E.: Artificial intelligence applications in the intensive care unit. Crit. Care Med. 29(2), 427–435 (2001)

    Article  Google Scholar 

  24. Imhoff, M., Kuhls, S.: Alarm algorithms in critical care monitoring. Anesth. Analg. 102(5), 1525–1537 (2006)

    Article  Google Scholar 

  25. Zhang, Y., Szolovits, P.: Patient-specific learning in real time for adaptive monitoring in critical care. J. Biomed. Inform. 41, 452–460 (2008)

    Article  Google Scholar 

  26. Caballero, M., Mirsky, G.M.: Reduction of false cardiac arrhythmia alarms through the use of machine learning techniques. In: Proceedings of the Computing in Cardiology Conference (CinC), vol. 42, pp. 1169–1172 (2015)

    Google Scholar 

  27. Eerikäinen, L.M., Vanschoren, J., Rooijakkers, M.J., Vullings, R., Aarts, R.M.: Reduction of false arrhythmia alarms using signal selection and machine learning. Physiol. Meas. 37(8), 1204 (2016)

    Article  Google Scholar 

  28. Ribas, R.V., Caballero-López, J., Ruiz-Sanmartín, A., Ruiz-Rodríguez, J.C., Rello, J., Vellido, A.: On the use of decision trees for ICU outcome prediction in sepsis patients treated with statins. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 37–43 (2011)

    Google Scholar 

  29. Dybowski, R., Weller, P., Chang, R., Gant, V.: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 347(9009), 1146–1150 (1996)

    Article  Google Scholar 

  30. Clermont, G., Angus, D., DiRusso, S., Griffin, M., Linde-Zwirble, W.: Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Crit. Care Med. 29(2), 291–296 (2001)

    Article  Google Scholar 

  31. Wong, L.S., Young, J.D.: A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks. Anaesthesia 54(11), 1048–1054 (1999)

    Article  Google Scholar 

  32. Citi, L., Barbieri, R.: Physionet 2012 challenge: predicting mortality of ICU patients using a cascaded SVM-GLM paradigm. Comput. Cardiol. 39, 257–260 (2012)

    Google Scholar 

  33. Nemati, S., Adams, R.: Identifying outcome-discriminative dynamics in multivariate physiological cohort time series. In: Advanced State Space Methods for Neural and Clinical Data, p. 283. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  34. Lasko, T.A., Denny, J.C., Levy, M.A.: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, irregular clinical data. PLoS One 8(6), e66341 (2013)

    Article  Google Scholar 

  35. Nachimuthu, S.K., Wong, A., Haug, P.J.: Modeling glucose homeostasis and insulin dosing in an intensive care unit using dynamic Bayesian networks. In: Proceedings of the AMIA Annual Symposium, p. 532 (2010)

    Google Scholar 

  36. Laursen, P.: Event detection on patient monitoring data using causal probabilistic networks. Methods Inf. Med. 33, 111–115 (1994)

    Google Scholar 

  37. Pimentel, M.A., Clifton, D.A., Tarassenko, L.: Gaussian process clustering for the functional characterisation of vital-sign trajectories. In: Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), p. 1–6 (2013)

    Google Scholar 

  38. Cohen, M.J., Grossman, A.D., Morabito, D., Knudson, M.M., Butte, A.J., Manley, G.T.: Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis. Crit. Care 14(1), R10 (2010)

    Article  Google Scholar 

  39. Denai, M., Mahfouf, M., Ross, J.: A fuzzy decision support system for therapy administration in cardiovascular intensive care patients. In: Proceedings of the FUZZ-IEEE 2007, pp. 1–6 (2007)

    Google Scholar 

  40. Paetz, J.: Intersection based generalization rules for the analysis of symbolic septic shock patient data. In: Proceedings of the ICDM 2002, pp. 673–676 (2002)

    Google Scholar 

  41. Paetz, H.: Metric rule generation with septic shock patient data. In: Proceedings of the ICDM 2001, pp. 637–638 (2001)

    Google Scholar 

  42. Schuh, C.: Sepsis and septic shock analysis using neural networks. In: Proceedings of the Annual Meeting of the NAFIPS 2007, pp. 650–654 (2007)

    Google Scholar 

  43. Duhamel, A., Beuscart, R., Demongeot, J., Mouton, Y.: SES (septicemia expert system): knowledge validation from data analysis. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), vol. 3, pp. 1400–1401 (1988)

    Google Scholar 

  44. Ross, J.J., Mason, D.G., Paterson, I.G., Linkens, D.A., Edwards, N.D.: Development of a knowledge-based simulator for haemodynamic support of septic shock. In: IEEE Colloquium on Simulation in Medicine (Ref. No. 1998/256), 3/1-3/4 (1998)

    Google Scholar 

  45. Kim, J., Blum, J., Scott, C.: Temporal features and Kernel methods for predicting sepsis in postoperative patients. Technical report, University of Michigan, USA (2010)

    Google Scholar 

  46. Wang, S.-L., Wu, F., Wang, B.-H.: Prediction of severe sepsis using SVM model. In: Arabnia, H. (ed.) Advances in Computational Biology. Advances in Experimental Medicine and Biology Series, vol. 680, pp. 75–81. Springer, New York (2010). doi:10.1007/978-1-4419-5913-3_9

    Chapter  Google Scholar 

  47. Tang, C.H.H., Middleton, P.M., Savkin, A.V., Chan, G.S.H., Bishop, S., Lovell, N.H.: Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiol. Meas. 31, 775–793 (2010)

    Article  Google Scholar 

  48. Brause, R., Hamker, F., Paetz, J.: Septic shock diagnosis by neural networks and rule based systems. In: Schmitt, M., Teodorescu, H.-N., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds.) Computational Intelligence Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing, vol. 96, pp. 323–356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  49. Brause, R., Hanisch, E., Paetz, J., Arlt, B.: Neural networks for sepsis prediction - the MEDAN project. Journal fur Anasthesie und Intensivbehandlung 11, 40–43 (2004)

    Google Scholar 

  50. Ribas, V.J., López, J.C., Sáez de Tejada, A., Ruiz-Rodríguez, J.C., Ruiz-Sanmartín, A., Rello, J., Vellido, A.: On the use of graphical models to study ICU outcome prediction in septic patients treated with statins. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds.) CIBB 2011. LNCS, vol. 7548, pp. 98–111. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35686-5_9

    Chapter  Google Scholar 

  51. Morales, C., Vellido, A., Ribas, V.: Applying conditional independence maps to improve sepsis prognosis. In: Data Mining in Biomedical Informatics and Healthcare (DMBIH) Workshop. IEEE International Conference on Data Mining (ICDM) (2016)

    Google Scholar 

  52. Ribas, V., Vellido, A., Romero, E., Ruiz-Rodríguez, J.C.: Sepsis mortality prediction with quotient basis Kernels. Artif. Intell. Med. 61(1), 45–52 (2014)

    Article  Google Scholar 

  53. Ribas, V., Ruiz-Rodríguez, J.C., Wojdel, A., Caballero-López, J., Ruiz-Sanmartín, A., Rello, J., Vellido, A.: Severe sepsis mortality prediction with relevance vector machines. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), pp. 100–103 (2011)

    Google Scholar 

  54. Singer, M., Deutschman, C.S., Seymour, C., et al.: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8), 801–810 (2016)

    Article  Google Scholar 

  55. Levy, M.M., Fink, M.P., Marshall, J.C., et al.: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 29, 530–538 (2003)

    Article  Google Scholar 

  56. Vincent, J.L., Moreno, R., Takala, J., et al.: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Crit. Care. Med. 22, 707–710 (1996)

    Google Scholar 

  57. Hanisch, E., Brause, R., Arlt, B., Paetz, J., Holzer, K.: The MEDAN database. Comput. Methods Programs Biomed. 75(1), 23–30 (2003)

    Google Scholar 

  58. Neapolitan, R.E.: Probabilistic Methods for Bioinformatics: With an Introduction to Bayesian Networks. Morgan Kaufman, Burlington (2009)

    MATH  Google Scholar 

  59. Aliferis, C.F., Tsamardinos, I., Statnikov, A.R., Brown, L.E.: Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery. METBMS 3, 371–376 (2003)

    Google Scholar 

  60. Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E.: APACHE II: a severity of disease classification system. Crit. Care Med. 13, 818–829 (1985)

    Article  Google Scholar 

  61. Le Gall, J.R., Neuman, F.H., Bleriot, J.P., Fulgencio, J.P., Garrigues, B., Gouzes, C., Lepage, E., Moine, P., Villers, D.: Mortality prediction using SAPS II: an update for French intensive care units. Crit. Care 9(6), R645–R652 (2005)

    Article  Google Scholar 

  62. Ribas, V.J., Vellido, A., Ruiz-Rodríguez, J.C., Rello, J.: Severe sepsis mortality prediction with logistic regression over latent factors. Expert Syst. Appl. 39(2), 1937–1943 (2012)

    Article  Google Scholar 

  63. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36(1), 2–17 (2009)

    Article  Google Scholar 

  64. Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34(1), 366–374 (2008)

    Article  Google Scholar 

  65. Dellinger, R.P., Carlet, J.M., Masur, H., Gerlach, H., Calandra, T., Cohen, J., Gea-Banacloche, J., Keh, D., Marshall, J.C., Parker, M.R., Ramsay, G., Zimmerman, J.L., Vicent, J.L., Levy, M.M.: Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 30, 536–555 (2004)

    Article  Google Scholar 

  66. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 6th edn. Prentice Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  67. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, New York (2008)

    MATH  Google Scholar 

  68. Ribas Ripoll, V.: On the intelligent management of sepsis. Ph.D. dissertation, Universitat Politcnica de Catalunya (UPC BarcelonaTech) (2013)

    Google Scholar 

  69. Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Unpublished Manuscript (1971). http://www.statslab.cam.ac.uk/grg/books/hammfest/hamm-cliff.pdf

Download references

Acknowledgments

This research was partially funded by Spanish TIN2016-79576-R research project and carried out under the Shockomics programme funded under the 7\(^{th}\) Framework Program of the European Union (EU Grant 602706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vellido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vellido, A., Ribas, V., Morales, C., Ruiz Sanmartín, A., Ruiz-Rodríguez, J.C. (2017). Machine Learning for Critical Care: An Overview and a Sepsis Case Study. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics