Skip to main content

Acute Kidney Injury After Cardiac Surgery

  • Chapter
  • First Online:
Cardio-Nephrology

Abstract

Cardiac surgery remains one of the most common high-risk surgeries in the world. Acute kidney injury (AKI) is one of the most frequent and serious complications to occur following cardiac surgery, with an incidence ranging from 5 to 40% depending on specific definition of AKI, the preoperative renal status of the patient, and the type of surgery. Although postoperative AKI requiring dialysis is rare, it is independently associated with mortality, and the risk of mortality is high in these patients, averaging around 60–70%. The pathogenesis of AKI in cardiac surgery is complex and multifactorial, and results from mechanisms that can cause injury during the preoperative, intraoperative, and postoperative phases. Risk factors for AKI include preoperative (patient-related) risk factors (e.g., female gender, reduced left ventricular ejection fraction, congestive heart failure, advanced age, diabetes) and perioperative (procedure-related) factors (e.g., off-pump vs on-pump surgery, duration of cardiopulmonary bypass, hypothermia, volume status, anemia, hemodilution). The diagnosis of cardiac surgery associated AKI relies mainly on biomarkers, and serum creatinine remains the most important biomarker routinely used since no suitable substitute that is equally as feasible and inexpensive has been identified to date. However, the detective ability of serum creatinine is low, and its response to renal insult is slow and late. We discuss here new biomarkers for the detection of post-cardiac surgery AKI, including cystatin C, interleukin (IL)-18, L-type fatty acid-binding protein, and neutrophil gelatinase-associated lipocalin. We discuss options for pharmacological renal protection to prevent post-cardiac surgery AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE inhibitor:

Angiotensin-converting enzyme inhibitors

AKI:

Acute kidney injury

AKIN:

Acute kidney injury network

ATP:

Adenosine triphosphate

CABG:

Coronary artery bypass graft

CPB:

Cardiopulmonary bypass

CSA-AKI:

Cardiac surgery associated acute kidney injury

eGFR:

Estimated glomerular filtration rate

GFR:

Glomerular filtration rate

L-FABP:

L-type fatty acid-binding protein

MECC:

Mini-extracorporeal circulation

NAG:

N-acetyl-B-d-glucosaminidase

NGAL:

Neutrophil gelatinase-associated lipocalin

RAA:

Renin-angiotensin-aldosterone

RBC:

Red blood cells

RIFLE:

Risk, injury, failure, loss, and end-stage renal disease

RTT:

Renal replacement therapy

SCr:

Serum creatinine

SRI:

Simplified renal index

UO:

Urine output

References

  1. Stafford-Smith M, Shaw A, Swaminathan M. Cardiac surgery and acute kidney injury: emerging concepts. Curr Opin Crit Care. 2009;15(6):498–502.

    Article  PubMed  Google Scholar 

  2. Chertow GM, Lazarus JM, Christiansen CL, Cook EF, Hammermeister KE, Grover F, Daley J. Preoperative renal risk stratification. Circulation. 1997;95(4):878–84.

    Article  CAS  PubMed  Google Scholar 

  3. Mao H, Katz N, Ariyanon W, Blanca-Martos L, Adybelli Z, Giuliani A, Danesi TH, Kim JC, Nayak A, Neri M, Virzi GM, Brocca A, Scalzotto E, Salvador L, Ronco C. Cardiac surgery-associated acute kidney injury. Cardiorenal Med. 2013;3(3):178–99.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grayson AD, Khater M, Jackson M, Fox MA. Valvular heart operation is an independent risk factor for acute renal failure. Ann Thorac Surg. 2003;75(6):1829–35.

    Article  PubMed  Google Scholar 

  5. Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32.

    Article  PubMed  Google Scholar 

  6. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  7. Leacche M, Rawn JD, Mihaljevic T, Lin J, Karavas AN, Paul S, Byrne JG. Outcomes in patients with normal serum creatinine and with artificial renal support for acute renal failure developing after coronary artery bypass grafting. Am J Cardiol. 2004;93(3):353–6.

    Article  PubMed  Google Scholar 

  8. Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–53.

    Article  PubMed  Google Scholar 

  9. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, Hiesmayr M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–605.

    Article  CAS  PubMed  Google Scholar 

  10. Thakar CV, Yared JP, Worley S, Cotman K, Paganini EP. Renal dysfunction and serious infections after open-heart surgery. Kidney Int. 2003;64(1):239–46.

    Article  PubMed  Google Scholar 

  11. Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Englberger L, Suri RM, Li Z, Casey ET, Daly RC, Dearani JA, Schaff HV. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2011;15(1):R16.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49.

    Article  CAS  PubMed  Google Scholar 

  16. Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357(8):797–805.

    Article  CAS  PubMed  Google Scholar 

  17. Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002;90(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  18. Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol. 2008;40(4):257–67.

    PubMed  PubMed Central  Google Scholar 

  19. Bagshaw SM, Gibney RT. Conventional markers of kidney function. Crit Care Med. 2008;36(4 Suppl):S152–8.

    Article  PubMed  Google Scholar 

  20. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  Google Scholar 

  21. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–91.

    Article  CAS  PubMed  Google Scholar 

  23. McIlroy DR, Wagener G, Lee HT. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol. 2010;5(2):211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perry TE, Muehlschlegel JD, Liu KY, Fox AA, Collard CD, Shernan SK, Body SC. Plasma neutrophil gelatinase-associated lipocalin and acute postoperative kidney injury in adult cardiac surgical patients. Anesth Analg. 2010;110(6):1541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haase M, Bellomo R, Devarajan P, Ma Q, Bennett MR, Mockel M, Matalanis G, Dragun D, Haase-Fielitz A. Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg. 2009;88(1):124–30.

    Article  PubMed  Google Scholar 

  26. Perrotti A, Miltgen G, Chevet-Noel A, Durst C, Vernerey D, Bardonnet K, Davani S, Chocron S. Neutrophil gelatinase-associated lipocalin as early predictor of acute kidney injury after cardiac surgery in adults with chronic kidney failure. Ann Thorac Surg. 2015;99(3):864–9.

    Article  PubMed  Google Scholar 

  27. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.

    Article  CAS  PubMed  Google Scholar 

  28. Haase M, Bellomo R, Story D, Davenport P, Haase-Fielitz A. Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit Care. 2008;12(4):R96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McIlroy DR, Wagener G, Lee HT. Biomarkers of acute kidney injury: an evolving domain. Anesthesiology. 2010;112(4):998–1004.

    Article  PubMed  Google Scholar 

  30. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, Gill K, Walker S, MacDonald K, Hiebert BM, Arora RC, Rigatto C. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005.

    Article  CAS  PubMed  Google Scholar 

  31. Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koyner JL, Garg AX, Coca SG, Sint K, Thiessen-Philbrook H, Patel UD, Shlipak MG, Parikh CR. Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol. 2012;23(5):905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M, Dupuis JY, Fremes SE, Kent B, Laflamme C, Lamy A, Legare JF, Mazer CD, McCluskey SA, Rubens FD, Sawchuk C, Beattie WS. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119(4):495–502.

    Article  PubMed  Google Scholar 

  35. Perez-Valdivieso JR, Monedero P, Vives M, Garcia-Fernandez N, Bes-Rastrollo M. Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study. BMC Nephrol. 2009;10:27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Medalion B, Cohen H, Assali A, Vaknin Assa H, Farkash A, Snir E, Sharoni E, Biderman P, Milo G, Battler A, Kornowski R, Porat E. The effect of cardiac angiography timing, contrast media dose, and preoperative renal function on acute renal failure after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2010;139(6):1539–44.

    Article  PubMed  Google Scholar 

  37. Kramer RS, Quinn RD, Groom RC, Braxton JH, Malenka DJ, Kellett MA, Brown JR. Same admission cardiac catheterization and cardiac surgery: is there an increased incidence of acute kidney injury? Ann Thorac Surg. 2010;90(5):1418–23 (discussion 23–4).

    Article  PubMed  Google Scholar 

  38. Rosner MH, Portilla D, Okusa MD. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med. 2008;23(1):3–18.

    Article  PubMed  Google Scholar 

  39. Bellomo R, Auriemma S, Fabbri A, D’Onofrio A, Katz N, McCullough PA, Ricci Z, Shaw A, Ronco C. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31(2):166–78.

    CAS  PubMed  Google Scholar 

  40. Chew ST, Newman MF, White WD, Conlon PJ, Saunders AM, Strittmatter WJ, Landolfo K, Grocott HP, Stafford-Smith M. Preliminary report on the association of apolipoprotein E polymorphisms, with postoperative peak serum creatinine concentrations in cardiac surgical patients. Anesthesiology. 2000;93(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  41. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.

    Article  PubMed  Google Scholar 

  42. Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, Ferguson TB, Peterson ED. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16 (quiz).

    Article  PubMed  Google Scholar 

  43. Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, Beattie WS. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.

    Article  CAS  PubMed  Google Scholar 

  44. Candela-Toha A, Elias-Martin E, Abraira V, Tenorio MT, Parise D, de Pablo A, Centella T, Liano F. Predicting acute renal failure after cardiac surgery: external validation of two new clinical scores. Clin J Am Soc Nephrol. 2008;3(5):1260–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Englberger L, Suri RM, Li Z, Dearani JA, Park SJ, Sundt TM III, Schaff HV. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am J Kidney Dis. 2010;56(4):623–31.

    Article  PubMed  Google Scholar 

  46. Demirjian S, Schold JD, Navia J, Mastracci TM, Paganini EP, Yared JP, Bashour CA. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59(3):382–9.

    Article  PubMed  Google Scholar 

  47. Urzua J, Troncoso S, Bugedo G, Canessa R, Munoz H, Lema G, Valdivieso A, Irarrazaval M, Moran S, Meneses G. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth. 1992;6(3):299–303.

    Article  CAS  PubMed  Google Scholar 

  48. Parolari A, Alamanni F, Gherli T, Bertera A, Dainese L, Costa C, Schena M, Sisillo E, Spirito R, Porqueddu M, Rona P, Biglioli P. Cardiopulmonary bypass and oxygen consumption: oxygen delivery and hemodynamics. Ann Thorac Surg. 1999;67(5):1320–7.

    Article  CAS  PubMed  Google Scholar 

  49. Poswal P, Mehta Y, Juneja R, Khanna S, Meharwal ZS, Trehan N. Comparative study of pulsatile and nonpulsatile flow during cardio-pulmonary bypass. Ann Card Anaesth. 2004;7(1):44–50.

    PubMed  Google Scholar 

  50. Sievert A, Sistino J. A meta-analysis of renal benefits to pulsatile perfusion in cardiac surgery. J Extra Corpor Technol. 2012;44(1):10–4.

    PubMed  PubMed Central  Google Scholar 

  51. Baraki H, Gohrbandt B, Del Bagno B, Haverich A, Boethig D, Kutschka I. Does pulsatile perfusion improve outcome after cardiac surgery? A propensity-matched analysis of 1959 patients. Perfusion. 2012;27(3):166–74.

    Article  CAS  PubMed  Google Scholar 

  52. Habib RH, Zacharias A, Schwann TA, Riordan CJ, Engoren M, Durham SJ, Shah A. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med. 2005;33(8):1749–56.

    Article  PubMed  Google Scholar 

  53. Huybregts RA, de Vroege R, Jansen EK, van Schijndel AW, Christiaans HM, van Oeveren W. The association of hemodilution and transfusion of red blood cells with biochemical markers of splanchnic and renal injury during cardiopulmonary bypass. Anesth Analg. 2009;109(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lau K, Shah H, Kelleher A, Moat N. Coronary artery surgery: cardiotomy suction or cell salvage? J Cardiothorac Surg. 2007;2:46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–51.

    Article  PubMed  Google Scholar 

  56. Kumar AB, Suneja M, Bayman EO, Weide GD, Tarasi M. Association between postoperative acute kidney injury and duration of cardiopulmonary bypass: a meta-analysis. J Cardiothorac Vasc Anesth. 2012;26(1):64–9.

    Article  PubMed  Google Scholar 

  57. Salis S, Mazzanti VV, Merli G, Salvi L, Tedesco CC, Veglia F, Sisillo E. Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery. J Cardiothorac Vasc Anesth. 2008;22(6):814–22.

    Article  PubMed  Google Scholar 

  58. Algarni KD, Yanagawa B, Rao V, Yau TM. Profound hypothermia compared with moderate hypothermia in repair of acute type A aortic dissection. J Thorac Cardiovasc Surg. 2014;148(6):2888–94.

    Article  PubMed  Google Scholar 

  59. Tsai JY, Pan W, Lemaire SA, Pisklak P, Lee VV, Bracey AW, Elayda MA, Preventza O, Price MD, Collard CD, Coselli JS. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. J Thorac Cardiovasc Surg. 2013;146(3):662–7.

    Article  PubMed  Google Scholar 

  60. Boodhwani M, Rubens FD, Wozny D, Nathan HJ. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting. Ann Thorac Surg. 2009;87(2):489–95.

    Article  PubMed  Google Scholar 

  61. Nigwekar SU, Kandula P, Hix JK, Thakar CV. Off-pump coronary artery bypass surgery and acute kidney injury: a meta-analysis of randomized and observational studies. Am J Kidney Dis. 2009;54(3):413–23.

    Article  PubMed  Google Scholar 

  62. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361(19):1827–37.

    Article  CAS  PubMed  Google Scholar 

  63. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, Straka Z, Piegas LS, Akar AR, Jain AR, Noiseux N, Padmanabhan C, Bahamondes JC, Novick RJ, Vaijyanath P, Reddy S, Tao L, Olavegogeascoechea PA, Airan B, Sulling TA, Whitlock RP, Ou Y, Ng J, Chrolavicius S, Yusuf S. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366(16):1489–97.

    Article  CAS  PubMed  Google Scholar 

  64. Karkouti K, Wijeysundera DN, Beattie WS. Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study. Circulation. 2008;117(4):478–84.

    Article  PubMed  Google Scholar 

  65. Almac E, Ince C. The impact of storage on red cell function in blood transfusion. Best Pract Res Clin Anaesthesiol. 2007;21(2):195–208.

    Article  CAS  PubMed  Google Scholar 

  66. Cardo LJ, Hmel P, Wilder D. Stored packed red blood cells contain a procoagulant phospholipid reducible by leukodepletion filters and washing. Transfus Apher Sci. 2008;38(2):141–7.

    Article  PubMed  Google Scholar 

  67. Karkouti K, Wijeysundera DN, Yau TM, McCluskey SA, van Rensburg A, Beattie WS. The influence of baseline hemoglobin concentration on tolerance of anemia in cardiac surgery. Transfusion. 2008;48(4):666–72.

    Article  PubMed  Google Scholar 

  68. Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg. 1996;111(5):1037–46.

    Article  CAS  PubMed  Google Scholar 

  69. Marathias KP, Vassili M, Robola A, Alivizatos PA, Palatianos GM, Geroulanos S, Vlahakos DV. Preoperative intravenous hydration confers renoprotection in patients with chronic kidney disease undergoing cardiac surgery. Artif Organs. 2006;30(8):615–21.

    Article  PubMed  Google Scholar 

  70. Welten GM, Chonchol M, Schouten O, Hoeks S, Bax JJ, van Domburg RT, van Sambeek M, Poldermans D. Statin use is associated with early recovery of kidney injury after vascular surgery and improved long-term outcome. Nephrol Dial Transplant. 2008;23(12):3867–73.

    Article  CAS  PubMed  Google Scholar 

  71. Billings FT, Pretorius M, Siew ED, Yu C, Brown NJ. Early postoperative statin therapy is associated with a lower incidence of acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2010;24(6):913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Molnar AO, Parikh CR, Coca SG, Thiessen-Philbrook H, Koyner JL, Shlipak MG, Myers ML, Garg AX. Association between preoperative statin use and acute kidney injury biomarkers in cardiac surgical procedures. Ann Thorac Surg. 2014;97(6):2081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arora P, Rajagopalam S, Ranjan R, Kolli H, Singh M, Venuto R, Lohr J. Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol. 2008;3(5):1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cittanova ML, Zubicki A, Savu C, Montalvan C, Nefaa N, Zaier K, Riou B, Coriat P. The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. Anesth Analg. 2001;93(5):1111–5.

    Article  CAS  PubMed  Google Scholar 

  75. Ouzounian M, Buth KJ, Valeeva L, Morton CC, Hassan A, Ali IS. Impact of preoperative angiotensin-converting enzyme inhibitor use on clinical outcomes after cardiac surgery. Ann Thorac Surg. 2012;93(2):559–64.

    Article  PubMed  Google Scholar 

  76. Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, Calabro MG, Sheiban I, Tumlin JA, Ranucci M, Zangrillo A. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  77. Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 2012;26(3):407–13.

    Article  CAS  PubMed  Google Scholar 

  78. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, Galdieri N, Comis M, Caramelli F, Pasero DC, Pala G, Renzini M, Conte M, Paternoster G, Martinez B, Pinelli F, Frontini M, Zucchetti MC, Pappalardo F, Amantea B, Camata A, Pisano A, Verdecchia C, Dal Checco E, Cariello C, Faita L, Baldassarri R, Scandroglio AM, Saleh O, Lembo R, Calabro MG, Bellomo R, Landoni G. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.

    Article  PubMed  Google Scholar 

  79. Mentzer RM Jr, Oz MC, Sladen RN, Graeve AH, Hebeler RF Jr, Luber JM Jr, Smedira NG. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA trial. J Am Coll Cardiol. 2007;49(6):716–26.

    Article  CAS  PubMed  Google Scholar 

  80. Haase M, Haase-Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, Murray PT, Bailey MJ, Bellomo R, Bagshaw SM. Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med. 2013;10(4):e1001426.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Heringlake M, Heinze H, Schubert M, Nowak Y, Guder J, Kleinebrahm M, Paarmann H, Hanke T, Schon J. A perioperative infusion of sodium bicarbonate does not improve renal function in cardiac surgery patients: a prospective observational cohort study. Crit Care. 2012;16(4):R156.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kristeller JL, Zavorsky GS, Prior JE, Keating DA, Brady MA, Romaldini TA, Hickman TL, Stahl RF. Lack of effectiveness of sodium bicarbonate in preventing kidney injury in patients undergoing cardiac surgery: a randomized controlled trial. Pharmacotherapy. 2013;33(7):710–7.

    Article  CAS  PubMed  Google Scholar 

  83. Smith MN, Best D, Sheppard SV, Smith DC. The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia. 2008;63(7):701–4.

    Article  CAS  PubMed  Google Scholar 

  84. Yallop KG, Sheppard SV, Smith DC. The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia. 2008;63(6):576–82.

    Article  CAS  PubMed  Google Scholar 

  85. Guinot PG, Bernard E, Abou Arab O, Badoux L, Diouf M, Zogheib E, Dupont H. Doppler-based renal resistive index can assess progression of acute kidney injury in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27(5):890–6.

    Article  PubMed  Google Scholar 

  86. Bossard G, Bourgoin P, Corbeau JJ, Huntzinger J, Beydon L. Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br J Anaesth. 2011;107(6):891–8.

    Article  CAS  PubMed  Google Scholar 

  87. Bouchard J, Mehta RL. Fluid accumulation and acute kidney injury: consequence or cause. Curr Opin Crit Care. 2009;15(6):509–13.

    Article  PubMed  Google Scholar 

  88. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  89. Elahi MM, Lim MY, Joseph RN, Dhannapuneni RR, Spyt TJ. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardiothorac Surg. 2004;26(5):1027–31.

    Article  PubMed  Google Scholar 

  90. Garcia-Fernandez N, Perez-Valdivieso JR, Bes-Rastrollo M, Vives M, Lavilla J, Herreros J, Monedero P. Timing of renal replacement therapy after cardiac surgery: a retrospective multicenter Spanish cohort study. Blood Purif. 2011;32(2):104–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Perrotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perrotti, A., Barrucand, B., Chocron, S. (2017). Acute Kidney Injury After Cardiac Surgery. In: Rangaswami, J., Lerma, E., Ronco, C. (eds) Cardio-Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-319-56042-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56042-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56040-3

  • Online ISBN: 978-3-319-56042-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics