Skip to main content

Condition Monitoring of Structures Under Non-ideal Excitation Using Low Cost Equipment

  • Chapter
  • First Online:
Probabilistic Prognostics and Health Management of Energy Systems

Abstract

Monitoring the integrity of structures and machines is an evergrowing concern in engineering applications. Better knowledge of structural conditions allows optimized maintenance cycles, increasing the availability and return of investment, and preventing failure of various systems from manufacturing equipment to air and land vehicles. A common way of evaluating the integrity of mechanical systems is capturing and analyzing vibration signals during operation. Many of the condition monitoring systems are highly specialized, incurring high initial investment. In this context, the objective of this work is to demonstrate the possibility of using low-cost systems for monitoring the integrity of structures. The use of piezoelectric sensors to capture vibration signals is currently ubiquitous, and acquisition and conditioning of these signals can be performed by low cost and open source logic programmable microcontrollers such as Arduino. Structures coupled to non-ideal motors (such that the phenomenon of resonance capture can occur) are used in this study. Controlled structural modifications are performed by the addition of point masses along the length of the beam, and by the application of magnetomotive forces with the use of an electromagnet at a fixed point on the beam. The experimental data is compared to analytical and numerical results, and to an established commercial system, demonstrating the possibility of satisfactory monitoring of structural integrity with such system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.R. Farrar, K. Worden, An introduction to structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365, 303–315 (2007)

    Google Scholar 

  2. C.R. Farrar, N.A.J. Lieven, Damage prognosis: the future of structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365, 623–632 (2007)

    Google Scholar 

  3. A. Rytter, P.H. Kirkegaard, Vibration Based Inspection of Civil Engineering Structures (Aalborg Universitetsforlag, 1994)

    Google Scholar 

  4. Y. Narkis, Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172, 549–558 (1994)

    Article  MATH  Google Scholar 

  5. S.W. Doebling, A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30, 91–105 (1998)

    Article  Google Scholar 

  6. D.C. Zimmerman, M. Kaouk, Structural damage detection using a minimum rank update theory. ASME J. Vib. Acoust. 116, 222–231 (1994)

    Article  MATH  Google Scholar 

  7. H. Sohn, C.R. Farrar, F. Hemez, J. Czarnecki, A Review of Structural Health Monitoring Literature: 1996–2001 (Los Alamos National Laboratory, 2004)

    Google Scholar 

  8. Y. Yan, L. Cheng, Z.Y. Wu, L.H. Yam, Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21, 2198–2211 (2007)

    Article  Google Scholar 

  9. B.P. Lathi, Sinais e Sistemas Lineares (Bookman, 2007)

    Google Scholar 

  10. M.R. Siegel, Estatística (McGraw-Hill, 1984)

    Google Scholar 

  11. L.J. Hadjileontiadis, E. Douka, A. Trochidis, Crack detection in beams using kurtosis. Comput. Struct. 83, 909–919 (2005)

    Article  Google Scholar 

  12. P.J.P. Gonçalves, M. Silveira, B.R. Pontes Jr., J.M. Balthazar, The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J. Sound Vib. 333, 5115–5129 (2014)

    Article  Google Scholar 

  13. P.J.P. Gonçalves, M. Silveira, E.A. Petrocino, J.M. Balthazar, Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica (2015)

    Google Scholar 

  14. J.M. Balthazar, D.T. Mook, H.I. Weber, R.M.L.R.F. Brasil, A. Fenili, D. Belato, J. Felix, An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)

    Article  MATH  Google Scholar 

  15. A. Sommerfeld, Beitrage zum dynamischen ausbau der festigkeislehre. Zeitschrift für Physik A Hadrons and Nuclei 46, 391–394 (1902)

    MATH  Google Scholar 

  16. M. Zukovic, L. Cveticanin, Chaotic responses in a stable duffing system of non-ideal type. J. Vib. Control 13, 751–767 (2007)

    Article  MATH  Google Scholar 

  17. M. Zukovic, L. Cveticanin, Chaos in non-ideal mechanical system with clearance. J. Vib. Control 15, 1229–1246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Cveticanin, Dynamics of the non-ideal mechanical systems: a review. J. Serbi. Soc. Comput. Mech. 4, 75–86 (2010)

    Google Scholar 

  19. M. Eckert, The Sommerfeld effect: theory and history of a remarkable resonance phenomenon. Eur. J. Phys. 17, 285–289 (1996)

    Article  Google Scholar 

  20. I.I. Blekhman, D.A. Indeitsev, A.L. Fradkov, Slow motions in systems with inertial excitation of vibrations. J. Mach. Manuf. Reliab. 37, 21–27 (2008)

    Google Scholar 

  21. M. Dimentberg, L. McGovern, R. Norton, J. Chapdelaine, R. Harrison, Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13, 171–187 (1997)

    Article  MATH  Google Scholar 

  22. K.A. Castão, L.C. Goes, J.M. Balthazar, A note on the attenuation of the sommerfeld effect of a non-ideal system taking into account a MR damper and the complete model of a DC motor. J. Vib. Control 17, 1112–1118 (2011)

    Article  MATH  Google Scholar 

  23. M. Tsuchida, K.L. Guilherme, J.M. Balthazar, On chaotic vibrations of a non-ideal system with two degrees of freedom: resonance and Sommerfeld effect. J. Sound Vib. 282, 1201–1207 (2005)

    Article  Google Scholar 

  24. F.H. Moraes, B.R. Pontes Jr., M. Silveira, J.M. Balthazar, R.M.L.R.F. Brasil, Influence of ideal and non-ideal excitation sources on the dynamics of a nonlinear vibro-impact system. J. Theor. Appl. Mech. 51, 763–774 (2013)

    Google Scholar 

  25. J. Palacios, J.M. Balthazar, R.M.L.R.F. Brasil, On non-ideal and non-linear portal frame dynamics analysis using Bogoliubov averaging method. J. Braz. Soc. Mech. Sci. Eng. 24, 257–265 (2002)

    Article  Google Scholar 

  26. D. Quinn, R. Rand, J. Bridge, The dynamics of resonant capture. Nonlinear Dyn. 8, 1–20 (1995)

    Article  MathSciNet  Google Scholar 

  27. G. Kerschen, D.M. McFarland, J.J. Kowtko, Y.S. Lee, L.A. Bergman, A.F. Vakakis, Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299, 822–838 (2007)

    Article  MATH  Google Scholar 

  28. Y.S. Lee, G. Kerschen, A.F. Vakakis, P. Panagopoulos, L. Bergman, D.M. McFarland, Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D Nonlinear Phenom. 204, 41–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.R. Bishop, U. Galvanetto, The behaviour of nonlinear oscillators subjected to ramped forcing. Meccanica 28, 249–256 (1993)

    Article  MATH  Google Scholar 

  30. J.L. Felix, J.M. Balthazar, R.M.L.R.F. Brasil, On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation. J. Sound Vib. 282, 1285–1292 (2005)

    Article  Google Scholar 

  31. J.L.P. Felix, J.M. Balthazar, Comments on nonlinear dynamics of a non-ideal duffing-rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319, 1136–1149 (2009)

    Article  Google Scholar 

  32. T. Krasnopolskaya, Chaos in acoustic subspace raised by the Sommerfeld-Kononenko effect. Meccanica 41, 299–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.M. Ko, C.W. Wong, H.F. Lam, Damage detection in steel framed structures by vibration measurement approach, in Proceedings of 12th International Modal Analysis Conference (1994), pp. 280–286

    Google Scholar 

  34. J. Curie, P. Curie, Développement, par pression, de lélectricité polaire dans les cristaux hémièdres á faces inclinèes. Comptes Rendus 91, 294–295 (1880)

    Google Scholar 

  35. G. Lippmann, Principe de la conservation de l’álectricité, ou second principe de la théorie des phénomènes électriques. J. de Physique Théorique et Appliquée 10, 381–394 (1881)

    Article  Google Scholar 

  36. Imran Patel, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device, Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment (InTech, 2011)

    Google Scholar 

  37. G. Park, C.R. Farrar, F.L. Scalea, S. Coccia, Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 15, 1673–1683 (2006)

    Article  Google Scholar 

  38. D. Wang, Health monitoring of reinforced concrete structures based on PZT admittance signal, in Proceedings of the SPIE, vol. 7493 (2009)

    Google Scholar 

  39. A. Guechaichia, I. Trendafilova, A simple method for enhanced vibration-based structural health monitoring. J. Phys. Conf. Ser. 305, 012073 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Paupitz Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Paupitz Gonçalves, P.J., Silveira, M. (2017). Condition Monitoring of Structures Under Non-ideal Excitation Using Low Cost Equipment. In: Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F. (eds) Probabilistic Prognostics and Health Management of Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-55852-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55852-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55851-6

  • Online ISBN: 978-3-319-55852-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics