Skip to main content

The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts

  • Chapter
  • First Online:
Patient-Derived Xenograft Models of Human Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 686 Accesses

Abstract

Preclinical cancer models often fail to capture the complex heterogeneity of a patient’s tumor and as such lack clinical predictive power. In an attempt to circumvent this issue, patient-derived xenograft (PDX) models have been developed as powerful tools for translational research as they retain much of the intratumor heterogeneity present in the donor tumor. Such cellular heterogeneity is very important as it likely represents a major therapeutic hurdle. The existence of subpopulations of cells in tumors with heightened tumor-initiating capacity and self-renewal potential, often termed “cancer stem cells” (CSCs), has been postulated to play a principal role in treatment resistance. In this chapter, we discuss the contribution of cell-autonomous and cell-extrinsic factors in governing cell plasticity and the CSC state, along with how these processes are recapitulated in the PDX model. Limitations with regard to current generation PDX models are discussed along with strategies to improve several aspects of the model with respect to preserving cell plasticity and stem-like states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAF:

Cancer-associated fibroblast

CDMs:

Cell-derived matrices

CSC:

Cancer stem-like cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FAK:

Focal adhesion kinase

HDACis:

Histone deacetylase inhibitors

HIFs:

Hypoxia inducible factors

NK:

Natural killer

PDX:

Patient-derived xenograft

PI3K:

Phosphoinositide 3-kinase

TME:

Tumor microenvironment

References

  1. Arrowsmith J. Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov. 2011;10(2):87. doi:10.1038/nrd3375.

    Article  CAS  PubMed  Google Scholar 

  2. Ledford H. Translational research: 4 ways to fix the clinical trial. Nature. 2011;477(7366):526–8. doi:10.1038/477526a.

    Article  CAS  PubMed  Google Scholar 

  3. Esquenet M, Swinnen JV, Heyns W, Verhoeven G. LNCaP prostatic adenocarcinoma cells derived from low and high passage numbers display divergent responses not only to androgens but also to retinoids. J Steroid Biochem Mol Biol. 1997;62(5–6):391–9.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31. doi:10.1054/bjoc.2001.1796. S0007092001917963 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wenger SL, Senft JR, Sargent LM, Bamezai R, Bairwa N, Grant SG. Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci Rep. 2004;24(6):631–9. doi:10.1007/s10540-005-2797-5.

    Article  CAS  PubMed  Google Scholar 

  6. Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA. 1976;73(2):549–53.

    Google Scholar 

  7. Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.

    CAS  PubMed  Google Scholar 

  8. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi:10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  10. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    Google Scholar 

  12. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. doi:10.1158/0008-5472.CAN-06-2030.

    Article  CAS  PubMed  Google Scholar 

  13. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51. doi:10.1158/0008-5472.CAN-05-2018.

    Article  CAS  PubMed  Google Scholar 

  14. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5. doi:10.1073/pnas.0905718106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. doi:10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9. doi:10.1093/jnci/djn123.

    Article  CAS  PubMed  Google Scholar 

  17. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A. 2007;104(2):618–23. doi:10.1073/pnas.0606599104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146(4):633–44. doi:10.1016/j.cell.2011.07.026.

    Article  CAS  PubMed  Google Scholar 

  19. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37. doi:10.1038/nature12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79–80:222–37. doi:10.1016/j.addr.2014.09.009.

    Article  PubMed  CAS  Google Scholar 

  21. Cohnheim J. Congenitales, quergestreiftes Muskelsarkom der Nieren. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1875;65(1):64–9. doi:10.1007/bf01978936.

    Google Scholar 

  22. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44. doi:10.1158/0008-5472.CAN-06-3126.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43. doi:10.1038/nrc3184.

    CAS  PubMed  Google Scholar 

  24. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68. doi:10.1038/nrc2499.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6. doi:10.1038/nature11287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488(7412):527–30. doi:10.1038/nature11344.

    Article  CAS  PubMed  Google Scholar 

  27. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337(6095):730–5. doi:10.1126/science.1224676.

    Article  CAS  PubMed  Google Scholar 

  28. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108(19):7950–5. doi:10.1073/pnas.1102454108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154(1):61–74. doi:10.1016/j.cell.2013.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–82. doi:10.1038/nn.3510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75. doi:10.1038/ng.865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. doi:10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon BS, Jeong WJ, Park J, Kim TI, Min do S, Choi KY. Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/beta-catenin signaling. J Natl Cancer Inst. 2014;106(2):djt373. doi:10.1093/jnci/djt373.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36(4):417–22. doi:10.1038/ng1330.

    Article  CAS  PubMed  Google Scholar 

  36. Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev. 2015;11(6):919–43. doi:10.1007/s12015-015-9611-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012;22(5):837–49. doi:10.1101/gr.131169.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennert H, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. 2015;1(4):466–74. doi:10.1001/jamaoncol.2015.1313.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kohli M, Wang L, Xie F, Sicotte H, Yin P, Dehm SM, et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS One. 2015;10(12):e0145176. doi:10.1371/journal.pone.0145176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74(4):1272–83. doi:10.1158/0008-5472.CAN-13-2921-T.

    Article  CAS  PubMed  Google Scholar 

  41. Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010;176(4):1901–13. doi:10.2353/ajpath.2010.090873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest. 2005;85(11):1392–404.

    Article  PubMed  Google Scholar 

  43. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30. doi:10.1016/j.celrep.2013.08.022.

    Article  CAS  PubMed  Google Scholar 

  44. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456–68. doi:10.1158/1078-0432.CCR-08-0138.

    Article  CAS  PubMed  Google Scholar 

  45. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8. doi:10.1038/nature05913.

    Article  CAS  PubMed  Google Scholar 

  46. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–3. doi:10.1093/ije/dyr184.

    Article  CAS  PubMed  Google Scholar 

  47. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53. doi:10.1038/nrc1279.

    Article  CAS  PubMed  Google Scholar 

  48. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26. doi:10.1016/j.cell.2006.02.041.

    Article  CAS  PubMed  Google Scholar 

  49. Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 2015;16(12):1609–19. doi:10.15252/embr.201541011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guilhamon P, Butcher LM, Presneau N, Wilson GA, Feber A, Paul DS, et al. Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics. Genome Med. 2014;6(12):116. doi:10.1186/s13073-014-0116-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Borodovsky A, Salmasi V, Turcan S, Fabius AW, Baia GS, Eberhart CG, et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget. 2013;4(10):1737–47. doi:10.18632/oncotarget.1408.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C, Huse J, et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget. 2013;4(10):1729–36. doi:10.18632/oncotarget.1412.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67. doi:10.1101/gr.147942.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611. doi:10.1016/j.cell.2008.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38. doi:10.1016/j.stem.2015.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buitenhuis M. The role of PI3K/protein kinase B (PKB/c-akt) in migration and homing of hematopoietic stem and progenitor cells. Curr Opin Hematol. 2011;18(4):226–30. doi:10.1097/MOH.0b013e32834760e5.

    Article  PubMed  Google Scholar 

  57. Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23(4):397–418. doi:10.1101/gad.1758709.

    Article  CAS  PubMed  Google Scholar 

  58. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. doi:10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brisken C, Duss S. Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective. Stem Cell Rev. 2007;3(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  60. Campos LS, Decker L, Taylor V, Skarnes W. Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem. 2006;281(8):5300–9. doi:10.1074/jbc.M511886200.

    Article  CAS  PubMed  Google Scholar 

  61. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17–26. doi:10.1016/j.stem.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cassidy JW. Nanotechnology in the regeneration of complex tissues. Bone Tissue Regen Insights. 2014;5:25–35. doi:10.4137/BTRI.S12331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol. 2005;167(2):475–88. doi:10.1016/S0002-9440(10)62991-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Quiros RM, Valianou M, Kwon Y, Brown KM, Godwin AK, Cukierman E. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol. 2008;110(1):99–109. doi:10.1016/j.ygyno.2008.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu Y, Yan C, Mu L, Huang K, Li X, Tao D, et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One. 2015;10(5):e0125625. doi:10.1371/journal.pone.0125625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32(1):145–56. doi:10.1002/stem.1556.

    Article  CAS  PubMed  Google Scholar 

  67. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–72. doi:10.1084/jem.20131195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krishnamurthy S, Warner KA, Dong Z, Imai A, Nor C, Ward BB, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells. 2014;32(11):2845–57. doi:10.1002/stem.1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76. doi:10.1038/ncb2048.

    Article  CAS  PubMed  Google Scholar 

  70. Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2014;33(21):2768–78. doi:10.1038/onc.2013.233.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Yao F, Yao X, Yi C, Tan C, Wei L, et al. Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24− phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep. 2009;21(4):1113–21.

    Article  CAS  PubMed  Google Scholar 

  72. Ostman A. The tumor microenvironment controls drug sensitivity. Nat Med. 2012;18(9):1332–4. doi:10.1038/nm.2938.

    Article  PubMed  CAS  Google Scholar 

  73. Reim F, Dombrowski Y, Ritter C, Buttmann M, Hausler S, Ossadnik M, et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058–66. doi:10.1158/0008-5472.CAN-09-0834.

    Article  CAS  PubMed  Google Scholar 

  74. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, et al. Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70(5):2030–40. doi:10.1158/0008-5472.CAN-09-1707.

    Article  CAS  PubMed  Google Scholar 

  75. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73. doi:10.1016/j.ccr.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  76. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402. doi:10.1016/j.stem.2007.08.001.

    Article  CAS  PubMed  Google Scholar 

  77. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–82. doi:10.1016/j.bbrc.2007.10.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi SY, Xue H, Wu R, Fazli L, Lin D, Collins CC, et al. The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin Cancer Res. 2016;22(11):2721–33. doi:10.1158/1078-0432.CCR-15-1624.

    Article  CAS  PubMed  Google Scholar 

  79. Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016;35(3):290–300. doi:10.1038/onc.2015.94.

    Article  CAS  PubMed  Google Scholar 

  80. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32(4):364–72. doi:10.1038/nbt.2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102(13):4783–8. doi:10.1073/pnas.0501283102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennewith KL, Durand RE. Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res. 2004;64(17):6183–9. doi:10.1158/0008-5472.CAN-04-0289.

    Article  CAS  PubMed  Google Scholar 

  83. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi:10.1016/j.cell.2012.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol. 2010;38(4):301–10.e2. doi:10.1016/j.exphem.2010.01.005.

    Article  CAS  Google Scholar 

  85. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47. doi:10.1016/j.ccr.2007.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35(5):3945–51. doi:10.1007/s13277-013-1561-x.

    Article  CAS  PubMed  Google Scholar 

  87. Deheeger M, Lesniak MS, Ahmed AU. Cellular plasticity regulated cancer stem cell niche: a possible new mechanism of chemoresistance. Cancer Cell Microenviron. 2014;1(5):e295. doi:10.14800/ccm.295.

    PubMed  PubMed Central  Google Scholar 

  88. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84. doi:10.4161/cc.8.20.9701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl Med. 2014;3(8):942–8. doi:10.5966/sctm.2014-0020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150–61. doi:10.1016/j.stem.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

  91. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28. doi:10.1016/j.stem.2012.05.007.

    Article  CAS  PubMed  Google Scholar 

  92. Yun Z, Lin Q. Hypoxia and regulation of cancer cell stemness. Adv Exp Med Biol. 2014;772:41–53. doi:10.1007/978-1-4614-5915-6_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 2008;283(52):36542–52. doi:10.1074/jbc.M804578200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010;30(1):344–53. doi:10.1128/MCB.00444-09.

    Article  CAS  PubMed  Google Scholar 

  95. Loh YH, Zhang W, Chen X, George J, Ng HH. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21(20):2545–57. doi:10.1101/gad.1588207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32(15):3018–32. doi:10.1128/MCB.06643-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramadoss S, Guo G, Wang CY. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene. 2016; doi:10.1038/onc.2016.174.

    Google Scholar 

  98. Yamamoto S, Wu Z, Russnes HG, Takagi S, Peluffo G, Vaske C, et al. JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell. 2014;25(6):762–77. doi:10.1016/j.ccr.2014.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang J, Ledaki I, Turley H, Gatter KC, Montero JC, Li JL, et al. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci. 2009;1177:185–97. doi:10.1111/j.1749-6632.2009.05027.x.

    Article  CAS  PubMed  Google Scholar 

  100. Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9(8):1221–35. doi:10.1089/ars.2007.1628.

    Article  CAS  PubMed  Google Scholar 

  101. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13(1):89. doi:10.1186/1475-2867-13-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Svastova E, Hulikova A, Rafajova M, Zat’ovicova M, Gibadulinova A, Casini A, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004;577(3):439–45. doi:10.1016/j.febslet.2004.10.043.

    Article  CAS  PubMed  Google Scholar 

  104. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011;18(5):829–40. doi:10.1038/cdd.2010.150.

    Article  CAS  PubMed  Google Scholar 

  105. Khavari DA, Sen GL, Rinn JL. DNA methylation and epigenetic control of cellular differentiation. Cell Cycle. 2010;9(19):3880–3. doi:10.4161/cc.9.19.13385.

    Article  CAS  PubMed  Google Scholar 

  106. Lunyak VV, Rosenfeld MG. Epigenetic regulation of stem cell fate. Hum Mol Genet. 2008;17(R1):R28–36. doi:10.1093/hmg/ddn149.

    Article  CAS  PubMed  Google Scholar 

  107. Ohbo K, Tomizawa S. Epigenetic regulation in stem cell development, cell fate conversion, and reprogramming. Biomol Concepts. 2015;6(1):1–9. doi:10.1515/bmc-2014-0036.

    Article  CAS  PubMed  Google Scholar 

  108. Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, et al. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget. 2016;7(13):15507–24. doi:10.18632/oncotarget.6266.

    PubMed  Google Scholar 

  109. Garner JM, Ellison DW, Finkelstein D, Ganguly D, Du Z, Sims M, et al. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations. PLoS One. 2015;10(5):e0125838. doi:10.1371/journal.pone.0125838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Dobbin ZC, Katre AA, Steg AD, Erickson BK, Shah MM, Alvarez RD, et al. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer. Oncotarget. 2014;5(18):8750–64. doi:10.18632/oncotarget.2373.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518(7539):422–6. doi:10.1038/nature13952.

    Article  CAS  PubMed  Google Scholar 

  112. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14(3):306–21. doi:10.1016/j.stem.2014.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469(7330):362–7. doi:10.1038/nature09733.

    Article  CAS  PubMed  Google Scholar 

  115. Cheung PF, Yip CW, Ng LW, Lo KW, Chow C, Chan KF, et al. Comprehensive characterization of the patient-derived xenograft and the paralleled primary hepatocellular carcinoma cell line. Cancer Cell Int. 2016;16:41. doi:10.1186/s12935-016-0322-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.

    Article  CAS  PubMed  Google Scholar 

  117. O’Hare T, Corbin AS, Druker BJ. Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev. 2006;16(1):92–9. doi:10.1016/j.gde.2005.11.002.

    Article  PubMed  CAS  Google Scholar 

  118. Oravecz-Wilson KI, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD, et al. Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell. 2009;16(2):137–48. doi:10.1016/j.ccr.2009.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. doi:10.1038/nature05236.

    Article  CAS  PubMed  Google Scholar 

  120. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3. doi:10.1038/nature07733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AM, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339(6119):543–8. doi:10.1126/science.1227670.

    Article  CAS  PubMed  Google Scholar 

  122. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20(1):29–36. doi:10.1038/nm.3418.

    Article  CAS  PubMed  Google Scholar 

  123. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538–42. doi:10.1038/nature14888.

    Article  CAS  PubMed  Google Scholar 

  124. Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’ drugs: an update. Mol Oncol. 2012;6(6):657–82. doi:10.1016/j.molonc.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

  125. Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 2013;9(2):255–69. doi:10.2217/fon.12.173.

    Article  CAS  PubMed  Google Scholar 

  126. Konantz M, Balci TB, Hartwig UF, Dellaire G, Andre MC, Berman JN, et al. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci. 2012;1266:124–37. doi:10.1111/j.1749-6632.2012.06575.x.

    Article  PubMed  Google Scholar 

  127. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721–31. doi:10.1038/nrd4627.

    Article  CAS  PubMed  Google Scholar 

  128. Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn. 2005;233(4):1560–70. doi:10.1002/dvdy.20471.

    Article  CAS  PubMed  Google Scholar 

  129. Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9(3):139–51. doi:10.1007/s10456-006-9040-2.

    Article  PubMed  Google Scholar 

  130. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:128. doi:10.1186/1471-2407-9-128.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nicoli S, Ribatti D, Cotelli F, Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67(7):2927–31. doi:10.1158/0008-5472.CAN-06-4268.

    Article  CAS  PubMed  Google Scholar 

  132. Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 2009;137(6):2136–45 e1–7. doi:10.1053/j.gastro.2009.08.065.

    Article  PubMed  CAS  Google Scholar 

  133. Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 2004;28(1):9–28.

    Article  CAS  PubMed  Google Scholar 

  134. Bansal N, Davis S, Tereshchenko I, Budak-Alpdogan T, Zhong H, Stein MN, et al. Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate. 2014;74(2):187–200. doi:10.1002/pros.22740.

    Article  CAS  PubMed  Google Scholar 

  135. Eguiara A, Holgado O, Beloqui I, Abalde L, Sanchez Y, Callol C, et al. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle. 2011;10(21):3751–7. doi:10.4161/cc.10.21.17921.

    Article  CAS  PubMed  Google Scholar 

  136. Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood. 2010;115(16):3296–303. doi:10.1182/blood-2009-10-246488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica. 2011;96(4):612–6. doi:10.3324/haematol.2010.031401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Corkery DP, Dellaire G, Berman JN. Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo. Br J Haematol. 2011;153(6):786–9. doi:10.1111/j.1365-2141.2011.08661.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Zoubeidi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Davies, A.H., Johnson, F., Ketola, K., Zoubeidi, A. (2017). The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts. In: Wang, Y., Lin, D., Gout, P. (eds) Patient-Derived Xenograft Models of Human Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55825-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55825-7_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55824-0

  • Online ISBN: 978-3-319-55825-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics