Skip to main content

The Origins of Diffuse Low-Grade Gliomas

  • Chapter
  • First Online:
Diffuse Low-Grade Gliomas in Adults

Abstract

The improved understanding of the natural course of diffuse low-grade gliomas (DLGG) has allowed a paradigmatic shift in their management, from a “wait-and-see” attitude to an early, individualized and dynamic therapeutic strategy. However, optimization of this management requires a better understanding the origins of DLGG. To date, the origins and etiologic factors of DLGG are mostly unknown. Beyond some data, yet limited, regarding the temporal and the cellular origins of DLGG, the mechanisms and risk factors involved in DLGG are poorly known. A way to better understand the mechanisms involved in the genesis of DLGG is to study their spatial distribution, both within the brain and at the geographical level. Indeed, some hypotheses regarding the mechanisms involved may be speculated from these distributions. It is interesting to note that DLGG have preferential locations within the brain, mostly within the so-called “functional areas”. On the basis of strong relationships between DLGG development and the eloquence of brain regions frequently invaded by these tumors, we propose a “functional theory” to explain the origin of DLGG. In addition, it can be hypothesized that the biological pathways involved in the genesis of DLGG may differ according to the tumor location, as anatomo-molecular studies showed significant correlations between the DLGG locations and tumor genetics, with a higher rate of IDH mutation and 1p19q codeletion in frontal tumors. The cellular and molecular mechanisms of such “molecular theory” will be reviewed in the present chapter. It is also interesting to note that the geographical distribution of diffuse WHO grade II and grade III gliomas is heterogeneous at the international and national levels, suggesting possible environmental risk factors. We will thus also discuss this “environmental theory". Finally, we will briefly summarize the current knowledge on genetic susceptibility in gliomas. All of these crucial issues very well illustrate the close relationships between the pathophysiology of gliomagenesis, the anatomo-functional organization of the brain, and personalized management of DLGG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.

    Article  PubMed  Google Scholar 

  2. Duffau H, Pallud J, Mandonnet E. Evidence for the genesis of WHO grade II glioma in an asymptomatic young adult using repeated MRIs. Acta Neurochir. 2011;153:473–7.

    Article  PubMed  Google Scholar 

  3. Gerin C, Pallud J, Grammaticos B, Mandonnet E, Deroulers C, Varlet P, et al. Improving the timemachine: estimating date of birth of grade II gliomas. Cell Prolif. 2012;45:76–90.

    Article  CAS  PubMed  Google Scholar 

  4. Duffau H, Capelle L. Preferential brain locations of low grade gliomas. Cancer. 2004;100:2622–6.

    Article  PubMed  Google Scholar 

  5. Darlix A, Zouaoui S, Virion JM, Rigau V, Mathieu-Daudé H, Blonski M, et al. Significant heterogeneity in the geographical distribution of diffuse grade II/III gliomas in France. J Neuro-Oncol. 2014;120(3):547–55.

    Article  Google Scholar 

  6. Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg. 2013;118(6):1157–68.

    Article  PubMed  Google Scholar 

  7. Parisot S, Darlix A, Baumann C, Zouaoui S, Yordanova Y, Blonski M, et al. A probabilistic atlas of diffuse WHO grade II glioma locations in the brain. PLoS One. 2016;11(1):e0144200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Laigle-Donadey F, Martin-Duverneuil N, Lejeune J, Crinière E, Capelle L, Duffau H, et al. Correlations between molecular profile and radiologic pattern in oligodendroglial tumors. Neurology. 2004;63:2360–2.

    Article  CAS  PubMed  Google Scholar 

  9. Chang E, Clark A, Smith J, Polley M, Chang S, Barbaro N, et al. Functional mapping–guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg. 2011;114:566–73.

    Article  PubMed  Google Scholar 

  10. Viegas C, Moritz-Gasser S, Rigau V, Duffau H. Occipital WHO grade II gliomas: oncological, surgical and functional considerations. Acta Neurochir. 2011;153:1907–17.

    Article  PubMed  Google Scholar 

  11. Parisot S, Duffau H, Chemouny S, Paragios N. Graph based spatial position mapping of low-grade gliomas. Med Image Comput Comput Assist Interv. 2011;14:508–15.

    PubMed  Google Scholar 

  12. Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport. 1999;10(13):2817–21.

    Article  CAS  PubMed  Google Scholar 

  13. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999;283(5409):1908–11.

    Article  CAS  PubMed  Google Scholar 

  14. Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61:6713–5.

    CAS  PubMed  Google Scholar 

  15. Mueller W, Hartmann C, Hoffmann A, Lanksch W, Kiwit J, Tonn J, et al. Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol. 2002;161(1):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang L, Jiang T, Yuan F, Li GL, Liu EZ, Wang ZC. Correlations between molecular profile and tumor location in Chinese patients with oligodendroglial tumors. Clin Neurol Neurosurg. 2008;110(10):1020–4.

    Article  CAS  PubMed  Google Scholar 

  17. Gozé C, Rigau V, Gibert L, Maudelonde T, Duffau H. Lack of complete 1p19q deletion in a consecutive series of 12 WHO grade II gliomas involving the insula: the marker of worse prognosis? J Neuro-Oncol. 2009;91:1–5.

    Article  Google Scholar 

  18. Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120(6):719–29.

    Article  PubMed  Google Scholar 

  19. Stockhammer F, Misch M, Helms HJ, Lengler U, Prall F, von Deimling A, et al. IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure. 2012;21(3):194–7.

    Article  PubMed  Google Scholar 

  20. Ren X, Cui X, Lin S, Wang J, Jiang Z, Sui D, et al. Co-deletion of chromosome 1p/19q and IDH1/2 mutation in glioma subsets of brain tumors in Chinese patients. PLoS One. 2012;7:e32764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leeper HE, Caron AA, Decker PA, Jenkins RB, Lachance DH, Giannini C. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget. 2015;6(30):30295–305.

    PubMed  PubMed Central  Google Scholar 

  22. Brat DJ, Verhaak RGW, Aldape KD, Yung WKA, Salama SR, Cooper LAD, et al. Cancer genome atlas research network. comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.

    Article  CAS  PubMed  Google Scholar 

  23. Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.

    Article  PubMed  Google Scholar 

  24. Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay P, Cornu P, et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60:587–94.

    Article  CAS  PubMed  Google Scholar 

  25. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427(6972):311–2.

    Article  CAS  PubMed  Google Scholar 

  26. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One. 2011;6(6):e20678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203.

    Article  CAS  PubMed  Google Scholar 

  28. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291(5504):657–61.

    Article  CAS  PubMed  Google Scholar 

  29. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298(5593):556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosenzweig MR, Krech D, Bennett EL, Diamond MC. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol. 1962;55:429–37.

    Article  CAS  PubMed  Google Scholar 

  31. Walsh RN, Budtz-Olsen OE, Penny JE, Cummins RA. The effects of environmental complexity on the histology of the rat hippocampus. J Comp Neurol. 1969;137(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging. 2009;27(8):1163–74.

    Article  PubMed  Google Scholar 

  33. Fauvel B, Groussard M, Chételat G, Fouquet M, Landeau B, Eustache F, et al. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage. 2014;90:179–88.

    Article  PubMed  Google Scholar 

  34. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97(8):4398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maguire EA, Woollett K, Spiers HJ. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus. 2006;16(12):1091–101.

    Article  PubMed  Google Scholar 

  36. Woollett K, Maguire EA. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Curr Biol. 2011;21(24):2109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takeuchi H, Taki Y, Sassa Y, Sekiguchi A, Nagase T, Nouchi R, et al. The associations between regional gray matter structural changes and changes of cognitive performance in control groups of intervention studies. Front Hum Neurosci. 2015;9:681.

    PubMed  PubMed Central  Google Scholar 

  38. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12(11):1370–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyke J, Driemeyer J, Gaser C, Büchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. 2008;28(28):7031–5.

    Article  CAS  PubMed  Google Scholar 

  40. Jäncke L, Koeneke S, Hoppe A, Rominger C, Hänggi J. The architecture of the golfer’s brain. PLoS One. 2009;4(3):e4785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hänggi J, Koeneke S, Bezzola L, Jäncke L. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp. 2010;31(8):1196–206.

    PubMed  Google Scholar 

  42. Granert O, Peller M, Gaser C, Groppa S, Hallett M, Knutzen A, et al. Manual activity shapes structure and function in contralateral human motor hand area. NeuroImage. 2011;54(1):32–41.

    Article  PubMed  Google Scholar 

  43. Ditye T, Kanai R, Bahrami B, Muggleton NG, Rees G, Walsh V. Rapid changes in brain structure predict improvements induced by perceptual learning. NeuroImage. 2013;81:205–12.

    Article  PubMed  Google Scholar 

  44. Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C, et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci. 2006;26:6314–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ceccarelli A, Rocca MA, Pagani E, Falini A, Comi G, Filippi M. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study. NeuroImage. 2009;48(3):585–9.

    Article  PubMed  Google Scholar 

  46. Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, et al. Training of working memory impacts structural connectivity. J Neurosci. 2010;30(9):3297–303.

    Article  CAS  PubMed  Google Scholar 

  47. Mechelli A, Crinion JT, Noppeney U, O'Doherty J, Ashburner J, Frackowiak RS, et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature. 2004;431(7010):757.

    Article  CAS  PubMed  Google Scholar 

  48. Elmer S, Hänggi J, Jäncke L. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex. 2014;54:179–89.

    Article  PubMed  Google Scholar 

  49. Aydin K, Ucar A, Oguz KK, Okur OO, Agayev A, Unal Z, et al. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study. Am J Neuroradiol. 2007;28(10):1859–64.

    Article  CAS  PubMed  Google Scholar 

  50. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, et al. Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS One. 2011;6(8):e23175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mackey AP, Whitaker KJ, Bunge SA. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity. Front Neuroanat. 2012;6:32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, et al. Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. NeuroImage. 2010;51(2):578–85.

    Article  PubMed  Google Scholar 

  53. Chamberlain R, McManus IC, Brunswick N, Rankin Q, Riley H, Kanai R. Drawing on the right side of the brain: a voxel-based morphometry analysis of observational drawing. NeuroImage. 2014;96:167–73.

    Article  PubMed  Google Scholar 

  54. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron. 2012;76(3):486–502.

    Article  CAS  PubMed  Google Scholar 

  55. Wan CY, Zheng X, Marchina S, Norton A, Schlaug G. Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca's aphasia. Brain Lang. 2014;136:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prosperini L, Fanelli F, Petsas N, Sbardella E, Tona F, Raz E, et al. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology. 2014;273(2):529–38.

    Article  PubMed  Google Scholar 

  57. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, et al. Musical training shapes structural brain development. J Neurosci. 2009;29(10):3019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bezzola L, Mérillat S, Gaser C, Jäncke L. Training-induced neural plasticity in golf novices. J Neurosci. 2011;31(35):11844–8.

    Article  CAS  Google Scholar 

  59. Ilg R, Wohlschläger AM, Gaser C, Liebau Y, Dauner R, Wöller A, et al. Gray matter increase induced by practice correlates with task-specific activation: a combined functional and morphometric magnetic resonance imaging study. J Neurosci. 2008;28(16):4210–5.

    Article  CAS  PubMed  Google Scholar 

  60. May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, et al. Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex. 2007;17(1):205–10.

    Article  CAS  PubMed  Google Scholar 

  61. Driemeyer J, Boyke J, Gaser C, Büchel C, May A. Changes in gray matter induced by learning—revisited. PLoS One. 2008;3(7):e2669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Solé-Padullés C, Bartrés-Faz D, Junqué C, Vendrell P, Rami L, Clemente IC, et al. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. Neurobiol Aging. 2009;30(7):1114–24.

    Article  PubMed  CAS  Google Scholar 

  63. Foubert-Samier A, Catheline G, Amieva H, Dilharreguy B, Helmer C, Allard M, et al. Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiol Aging. 2012;33(2):423.

    Article  PubMed  Google Scholar 

  64. Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage. 2011;54(3):2086–95.

    Article  PubMed  Google Scholar 

  66. Kempermann G, Kuhn HG, Gage PH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  CAS  PubMed  Google Scholar 

  67. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007;104(13):5638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, et al. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1966;128(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  69. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV, et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science. 2016;351(6275):849–54.

    Article  CAS  PubMed  Google Scholar 

  70. Anderson BJ, Li X, Alcantara AA, Isaacs KR, Black JE, Greenough WT. Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia. 1994;11(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  71. Kleim JA, Markham JA, Vij K, Freese JL, Ballard DH, Greenough WT. Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav Brain Res. 2007;178(2):244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Green EJ, Greenough WT, Schlumpf BE. Effects of complex or isolated environments on cortical dendrites of middle-aged rats. Brain Res. 1983;264:233–40.

    Article  CAS  PubMed  Google Scholar 

  73. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788–94.

    Article  CAS  PubMed  Google Scholar 

  74. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10(9):647–58.

    Article  CAS  PubMed  Google Scholar 

  75. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, et al. Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A. 1996;93(18):9887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, et al. Astrocytes promote myelination in response to electrical impulses. Neuron. 2006;49(6):823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Delekate A, Zagrebelsky M, Kramer S, Schwab ME, Korte M. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci U S A. 2011;108:2569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johansen-Berg H. Structural plasticity: rewiring the brain. Curr Biol. 2007;17(4):R141–4.

    Article  CAS  PubMed  Google Scholar 

  79. Garofalo S, D'Alessandro G, Chece G, Brau F, Maggi L, Rosa A, et al. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun. 2015;6:6623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scheurer ME, El-Zein R, Thompson PA, Aldape KD, Levin VA, Gilbert MR, et al. Long-term anti-inflammatory and antihistamine medication use and adult glioma risk. Cancer Epidemiol Biomark Prev. 2008;17(5):1277–81.

    Article  CAS  Google Scholar 

  81. Wigertz A, Lönn S, Hall P, Feychting M. Non-participant characteristics and the association between socioeconomic factors and brain tumour risk. J Epidemiol Community Health. 2010;64(8):736–43.

    Article  PubMed  Google Scholar 

  82. Cabaniols C, Giorgi R, Chinot O, Ferahta N, Spinelli V, Alla P, et al. Links between private habits, psychological stress and brain cancer: a case-control pilot study in France. J Neuro-Oncol. 2011;103(2):307–16.

    Article  Google Scholar 

  83. Khanolkar AR, Ljung R, Talbäck M, Brooke HL, Carlsson S, Mathiesen T, et al. Socioeconomic position and the risk of brain tumour: a Swedish national population-based cohort study. J Epidemiol Community Health. 2016;70:1222–8.

    Article  Google Scholar 

  84. Inskip PD, Tarone RE, Hatch EE, Wilcosky TC, Fine HA, Black PM, et al. Sociodemographic indicators and risk of brain tumours. Int J Epidemiol. 2003;32(2):225–33.

    Article  PubMed  Google Scholar 

  85. McCarthy BJ, Rankin KM, Aldape K, Bondy ML, Brännström T, Broholm H, et al. Risk factors for oligodendroglial tumors: a pooled international study. Neuro-Oncology. 2011;13(2):242–50.

    Article  PubMed  Google Scholar 

  86. Krishnan G, Felini M, Carozza SE, Miike R, Chew T, Wrensch M. Occupation and adult gliomas in the San Francisco Bay Area. J Occup Environ Med. 2003;45(6):639–47.

    Article  PubMed  Google Scholar 

  87. Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol. 2009;472:323–42.

    Article  CAS  PubMed  Google Scholar 

  88. Preston-Martin S, Mack W, Henderson BE. Risk factors for gliomas and meningiomas in males in Los Angeles County. Cancer Res. 1989;49(21):6137–43.

    CAS  PubMed  Google Scholar 

  89. Zheng T, Cantor KP, Zhang Y, Keim S, Lynch CF. Occupational risk factors for brain cancer: a population-based case-control study in Iowa. J Occup Environ Med. 2001;43(4):317–24.

    Article  CAS  PubMed  Google Scholar 

  90. Navas-Acién A, Pollán M, Gustavsson P, Plato N. Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am J Ind Med. 2002;42(3):214–27.

    Article  PubMed  Google Scholar 

  91. Monson RR, Fine LJ. Cancer mortality and morbidity among rubber workers. J Natl Cancer Inst. 1978;61(4):1047–53.

    CAS  PubMed  Google Scholar 

  92. Pan SY, Ugnat AM, Mao Y. Canadian Cancer Registries Epidemiology Research Group. Occupational risk factors for brain cancer in Canada. J Occup Environ Med. 2005;47(7):704–17.

    Article  CAS  PubMed  Google Scholar 

  93. Ruder AM, Waters MA, Carreón T, Butler MA, Calvert GM, Davis-King KE, et al. The Upper Midwest Health Study: industry and occupation of glioma cases and controls. Am J Ind Med. 2012;55(9):747–55.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.

    Article  CAS  PubMed  Google Scholar 

  95. Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vergani F, Martino J, Gozé C, Rigau V, Duffau H. World Health Organization grade II gliomas and subventricular zone: anatomic, genetic, and clinical considerations. Neurosurgery. 2011;68(5):1293–8.

    Article  PubMed  Google Scholar 

  98. Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O, Verhaak RG, et al. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A. 2014;111(40):E4214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alcantara Llaguno SR, Wang Z, Sun D, Chen J, Xu J, Kim E, et al. Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. Cancer Cell. 2015;28(4):429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lindberg N, Jiang Y, Xie Y, Bolouri H, Kastemar M, Olofsson T, et al. Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci. 2014;34(44):14644–51.

    Article  PubMed  CAS  Google Scholar 

  101. Ko Y, Ament SA, Eddy JA, Caballero J, Earls JC, Hood L, Price ND. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain. Proc Natl Acad Sci U S A. 2013;110(8):3095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vigano F, Möbius W, Götz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16(10):1370–2.

    Article  CAS  PubMed  Google Scholar 

  103. Irvin DM, McNeill RS, Bash RE, Miller CR. Intrinsic astrocyte heterogeneity influences tumor growth in glioma mouse models. Brain Pathol. 2016;27:36–50. doi:10.1111/bpa.12348.

    Article  PubMed  CAS  Google Scholar 

  104. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–70.

    Article  CAS  PubMed  Google Scholar 

  106. Houben MP, Coebergh JW, Birch JM, Tijssen CC, van Duijn CM, McNally RJ. Space–time clustering patterns of gliomas in the Netherlands suggest an infectious aetiology. Eur J Cancer. 2005;41:2917–23.

    Article  CAS  PubMed  Google Scholar 

  107. Houben MP, Coebergh JW, Birch JM, Tijssen CC, van Duijn CM, McNally RJ. Space–time clustering of glioma cannot be attributed to specific histological subgroups. Eur J Epidemiol. 2006;21:197–201.

    Article  CAS  PubMed  Google Scholar 

  108. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology. 2012;14(suppl 5):v1–v49.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Crocetti E, Trama A, Stiller C, Caldarella A, Soffietti R, Jaal J, et al. Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer. 2012;48(10):1532–42.

    Article  PubMed  Google Scholar 

  110. Bauchet L, Rigau V, Mathieu-Daudé H, Figarella-Branger D, Hugues D, Palusseau L, et al. French brain tumor data bank: methodology and first results on 10,000 cases. J Neuro-Oncol. 2007;84(2):189–99.

    Article  Google Scholar 

  111. Rigau V, Zouaoui S, Mathieu-Daudé H, Darlix A, Maran A, Trétarre B, et al. French brain tumor database: 5-year histological results on 25 756 cases. Brain Pathol. 2011;21(6):633–44.

    Article  PubMed  Google Scholar 

  112. Zouaoui S, Rigau V, Mathieu-Daudé H, Darlix A, Bessaoud F, Fabbro-Peray P, et al. French brain tumor database: general results on 40,000 cases, main current applications and future prospects. Neurochirurgie. 2012;58(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  113. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. 2011;6(6):e20456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Aleksandrova K, Nimptsch K, Pischon T. Influence of obesity and related metabolic alterations on colorectal cancer risk. Curr Nutr Rep. 2013;2(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  115. National Research Council. The health effect of nitrate, nitrite and N-nitroso compounds. Part I. Washington, DC: National Academy Press; 1981.

    Google Scholar 

  116. Maekawa A, Mitsumori K. Spontaneous occurrence and chemical induction of neurogenic tumors in rats--influence of host factors and specificity of chemical structure. Crit Rev Toxicol. 1990;20(4):287–310.

    Article  CAS  PubMed  Google Scholar 

  117. Michaud DS, Holick CN, Batchelor TT, Giovannucci E, Hunter DJ. Prospective study of meat intake and dietary nitrates, nitrites, and nitrosamines and risk of adult glioma. Am J Clin Nutr. 2009;90(3):570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Terry MB, Howe G, Pogoda JM, Zhang FF, Ahlbom A, Choi W, et al. An international case-control study of adult diet and brain tumor risk: a histology-specific analysis by food group. Ann Epidemiol. 2009;19(3):161–71.

    Article  PubMed  Google Scholar 

  119. Dubrow R, Darefsky AS, Park Y, Mayne ST, Moore SC, Kilfoy B, et al. Dietary components related to N-nitroso compound formation: a prospective study of adult glioma. Cancer Epidemiol Biomark Prev. 2010;19(7):1709–22.

    Article  CAS  Google Scholar 

  120. Saneei P, Willett W, Esmaillzadeh A. Red and processed meat consumption and risk of glioma in adults: a systematic review and meta-analysis of observational studies. J Res Med Sci. 2015;20(6):602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wei Y, Zou D, Cao D, Xie P. Association between processed meat and red meat consumption and risk for glioma: a meta-analysis from 14 articles. Nutrition. 2015;31(1):45–50.

    Article  PubMed  Google Scholar 

  122. Vukusic S, Van Bockstael V, Gosselin S, Confavreux C. Regional variations in the prevalence of multiple sclerosis in French farmers. J Neurol Neurosurg Psychiatry. 2006;78:707–9.

    Article  Google Scholar 

  123. Fromont A, Binquet C, Sauleau EA, Fournel I, Bellisario A, Adnet J, et al. Geographic variations of multiple sclerosis in France. Brain. 2010;133(Pt 7):1889–99.

    Article  PubMed  Google Scholar 

  124. Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268–77.

    Article  PubMed  Google Scholar 

  125. Kampman MT, Wilsgaard T, Mellgren SI. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J Neurol. 2007;254(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  126. Mohr SB, Gorham ED, Garland CF, Grant WB, Garland FC. Low ultraviolet B and increased risk of brain cancer: an ecological study of 175 countries. Neuroepidemiology. 2010;35(4):281–90.

    Article  PubMed  Google Scholar 

  127. Malmer B, Adatto P, Armstrong G, Barnholtz-Sloan J, Bernstein JL, Claus E, et al. GLIOGENE an international consortium to understand familial glioma. Cancer Epidemiol Biomark Prev. 2007;16(9):1730–4.

    Article  CAS  Google Scholar 

  128. Ohgaki H, Kim YH, Steinbach JP. Nervous system tumors associated with familial tumor syndromes. Curr Opin Neurol. 2010;23(6):583–91.

    Article  CAS  PubMed  Google Scholar 

  129. Sadetzki S, Bruchim R, Oberman B, Armstrong GN, Lau CC, Claus EB, et al. Description of selected characteristics of familial glioma patients - results from the Gliogene Consortium. Eur J Cancer. 2013;49(6):1335–45.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rice T, Lachance DH, Molinaro AM, Eckel-Passow JE, Walsh KM, Barnholtz-Sloan J, et al. Understanding inherited genetic risk of adult glioma: a review. Neuro Oncol Pract. 2016;3(1):10–6.

    Google Scholar 

  131. Scheurer ME, Etzel CJ, Liu M, Barnholtz-Sloan J, Wiklund F, Tavelin B, et al. Familial aggregation of glioma: a pooled analysis. Am J Epidemiol. 2010;172(10):1099–107.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Malmer B, Henriksson R, Grönberg H. Different aetiology of familial low-grade and high-grade glioma? A nationwide cohort study of familial glioma. Neuroepidemiology. 2002;21(6):279–86.

    Article  PubMed  Google Scholar 

  133. Hemminki K, Tretli S, Sundquist J, Johannesen TB, Granström C. Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. Lancet Oncol. 2009;10(5):481–8.

    Article  PubMed  Google Scholar 

  134. Idbaih A, Boisselier B, Sanson M, Crinière E, Liva S, Marie Y, et al. Tumor genomic profiling and TP53 germline mutation analysis of first-degree relative familial gliomas. Cancer Genet Cytogenet. 2007;176(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  135. Shete S, Lau CC, Houlston RS, Claus EB, Barnholtz-Sloan J, Lai R, et al. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium. Cancer Res. 2011;71(24):7568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun X, Vengoechea J, Elston R, Chen Y, Amos CI, Armstrong G, et al. A variable age of onset segregation model for linkage analysis, with correction for ascertainment, applied to glioma. Cancer Epidemiol Biomark Prev. 2012;21(12):2242–51.

    Article  Google Scholar 

  137. Jalali A, Amirian ES, Bainbridge MN, Armstrong GN, Liu Y, Tsavachidis S, et al. Targeted sequencing in chromosome 17q linkage region identifies familial glioma candidates in the Gliogene Consortium. Sci Rep. 2015;5:8278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Paunu N, Lahermo P, Onkamo P, Ollikainen V, Rantala I, Helén P, et al. A novel low-penetrance locus for familial glioma at 15q23–q26.3. Cancer Res. 2002;62(13):3798–802.

    CAS  PubMed  Google Scholar 

  139. Malmer B, Haraldsson S, Einarsdottir E, Lindgren P, Holmberg D. Homozygosity mapping of familial glioma in Northern Sweden. Acta Oncol. 2005;44(2):114–9.

    Article  CAS  PubMed  Google Scholar 

  140. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M. Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev. 2010;20(3):239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu Y, Zhang H, Zhou K, Chen L, Xu Z, Zhong Y, et al. Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Carcinogenesis. 2007;28(9):1906–13.

    Article  CAS  PubMed  Google Scholar 

  142. Melin B, Jenkins R. Genetics in glioma: lessons learned from genome-wide association studies. Curr Opin Neurol. 2013;26(6):688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology. 2014;16(7):896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF, et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet. 2011;43(11):1098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Egan KM, Nabors LB, Olson JJ, Monteiro AN, Browning JE, Madden MH, et al. Rare TP53 genetic variant associated with glioma risk and outcome. J Med Genet. 2012;49(7):420–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Enciso-Mora V, Hosking FJ, Di Stefano AL, Zelenika D, Shete S, Broderick P, et al. Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222. Br J Cancer. 2013;108(10):2178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Andersson U, Schwartzbaum J, Wiklund F, Sjöström S, Liu Y, Tsavachidis S, et al. A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 2010;49(6):767–75.

    Article  CAS  PubMed  Google Scholar 

  148. Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet. 2011;20(14):2897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y, et al. Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol. 2011;173(8):915–22.

    Article  PubMed  Google Scholar 

  152. Jenkins RB, Wrensch MR, Johnson D, Fridley BL, Decker PA, Xiao Y, et al. Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. Cancer Genet. 2011;204(1):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, Hansen HM, et al. A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet. 2012;44(10):1122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Enciso-Mora V, Hosking FJ, Kinnersley B, Wang Y, Shete S, Zelenika D, et al. Deciphering the 8q24.21 association for glioma. Hum Mol Genet. 2013;22(11):2293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Di Stefano AL, Enciso-Mora V, Marie Y, Desestret V, Labussière M, Boisselier B, et al. Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro-Oncology. 2013;15(5):542–7.

    Article  PubMed  CAS  Google Scholar 

  156. Rice T, Zheng S, Decker PA, Walsh KM, Bracci P, Xiao Y, et al. Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology. Neuro-Oncology. 2013;15(5):535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walsh KM, Anderson E, Hansen HM, Decker PA, Kosel ML, Kollmeyer T, et al. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies. Genet Epidemiol. 2013;37(2):222–8.

    Article  PubMed  Google Scholar 

  158. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lönn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomark Prev. 2008;17(5):1195–202.

    Article  CAS  Google Scholar 

  160. Felini MJ, Olshan AF, Schroeder JC, North KE, Carozza SE, Kelsey KT, et al. DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. Neuroepidemiology. 2007;29(1-2):55–8.

    Article  PubMed  Google Scholar 

  161. Bethke L, Sullivan K, Webb E, Murray A, Schoemaker M, Auvinen A, et al. The common D302H variant of CASP8 is associated with risk of glioma. Cancer Epidemiol Biomark Prev. 2008;17(4):987–9.

    Article  CAS  Google Scholar 

  162. Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain. 2007;130:898–914.

    Article  PubMed  Google Scholar 

  163. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.

    Article  PubMed  Google Scholar 

  164. Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65:131–5.

    Article  PubMed  Google Scholar 

  165. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. NeuroImage. 2011;56:992–1000.

    Article  PubMed  Google Scholar 

  166. Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA. 2012;308(18):1881–8.

    Article  CAS  PubMed  Google Scholar 

  167. Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol. 2009;21:543–9.

    Article  PubMed  Google Scholar 

  168. Duffau H. The challenge to remove diffuse low grade gliomas while preserving brain functions. Acta Neurochir. 2012;154:569–74.

    Article  PubMed  Google Scholar 

  169. Yordanova Y, Moritz-Gasser S, Duffau H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011;115:232–9.

    Article  PubMed  Google Scholar 

  170. Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir. 2012;154:757–84.

    Google Scholar 

  171. Duffau H. The rationale to perform early resection in incidental diffuse low-grade glioma: toward a “preventive surgical neurooncology”. World Neurosurg. 2012;S1878–8750(12):00672–9.

    Google Scholar 

  172. Mandonnet E, de Witt Hamer P, Pallud J, Bauchet L, Whittle I, Duffau H. Silent diffuse low-grade glioma: toward screening and preventive treatment? Cancer. 2014;120(12):1758–62.

    Article  PubMed  Google Scholar 

  173. Mandonnet E, de Witt HP, Duffau H. MRI screening for glioma: a preliminary survey of healthy potential candidates. Acta Neurochir. 2016;158(5):905–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Darlix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Darlix, A., Gozé, C., Rigau, V., Bauchet, L., Taillandier, L., Duffau, H. (2017). The Origins of Diffuse Low-Grade Gliomas. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-55466-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55466-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55464-8

  • Online ISBN: 978-3-319-55466-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics