Skip to main content

Insect Sensory System

  • Reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior

Introduction

Insects are the richest organisms on earth in terms of species, biomass, and distribution (Goulson 2019). Such richness is highly associated with morphological, ecological, and behavioral diversity, along with lineages diversifications that have been driven by coevolution with angiosperms (Hunt et al. 2007), which make insects the main pollinators and great dispersers. To play that role, along with many others, insects evolved simple, connected sensory organs, which receive and filter the information around and process it differently according to the context. These organs are involved in the insects’ evolutionary success and promote a perception of the environment through their stiff exoskeleton. As such, and due to their thick physical barrier, insects rely upon a range of mechano- and chemosensory structures, both spread throughout the major axis of their body.

The insect’s sensory systems have been extensively investigated, mainly from model organisms, such as Drosophila...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almudi, I., Martín-Blanco, C. A., García-Fernandez, I. M., López-Catalina, A., Davie, K., Aerts, S., & Casares, F. (2019). Establishment of the mayfly Cloeon dipterum as a new model system to investigate insect evolution. EvoDevo, 10(1), 6–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altincicek, B., Knorr, E., & Vilcinskas, A. (2008). Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Developmental and Comparative Immunology, 32(5), 0–595.

    Article  Google Scholar 

  • Arikawa, K., Suyama, D., & Fujii, T. (1997). Hindsight by genitalia: Photoguided copulation in butterflies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 180, 295–299.

    Article  Google Scholar 

  • Ayali, A. (2004). The insect frontal ganglion and stomatogastric pattern generator networks. Neurosignals, 13, 20–36.

    Article  PubMed  Google Scholar 

  • Ayali, A. (2009). The role of the arthropod stomatogastric nervous system in moulting behaviour and ecdysis. The Journal of Experimental Biology, 212, 453–459.

    Article  PubMed  Google Scholar 

  • Baik, L. S., & Carlson, J. R. (2020). The mosquito taste system and disease control. PNAS, 117(52), 32848–32856.

    Google Scholar 

  • Blinkov, S.M. & Glezer, I.I. (1968). The human brain in figures and tables: A quantiative handbook. Plenum, New York: Basic Books. In T. N. Edwards & I. A. Meinertzhagen (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in Neurobiology, 90(4), 471–497.

    Google Scholar 

  • Brusca, R. C., Moore, W., & Shuster, S. M. (2016). Invertebrates (3rd ed., 1104pp). Sunderland: Sinauer Assiciates.

    Google Scholar 

  • Burkhardl, D., & Gewecke, M. (1965). Mechanoreception in arthropoda: The chain from stimulus to behavioral pattern. Cold Spring Harbor Symposia on Quantitative Biology, 30, 601–614.

    Article  Google Scholar 

  • Camhi, J. M. (1969a). Locust wind receptors. I. Transducer mechanics and sensory response. The Journal of Experimental Biology, 50, 335–348.

    Article  PubMed  Google Scholar 

  • Camhi, J. M. (1969b). Locust wind receptors. III. Contribution to flight initiation and lift control. The Journal of Experimental Biology, 50, 363–373.

    Article  PubMed  Google Scholar 

  • Chapman, R. F., Simpson, S., & Douglas, A. (2013). The insects: Structure and function (929pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Čokl, A. (1983). Functional properties of vibroreceptors in the legs of Nezara viridula (L.). (Heteroptera, Pentatomidae). Journal of Comparative Physiology A, 150, 261–269.

    Article  Google Scholar 

  • Devetak, D., & Pabst, M. A. (1994). Structure of the subgenual organ in the green lacewing, Chrysoperla carnea. Tissue and Cell, 26(2), 249–257.

    Google Scholar 

  • Dreller, C., & Kirchner, W. H. (1993). Hearing in honeybees: Localization of the auditory sense organ. Journal of Comparative Physiology A, 173, 275–279.

    Article  Google Scholar 

  • Edwards, T. N., & Meinertzhagen, I. A. (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in Neurobiology, 90(4), 471–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert, C. (1994). Form and function of stemmata in larvae of holometabolous insects. Annual Review of Entomology, 39, 323–349.

    Article  Google Scholar 

  • Goulson, D. (2019). The insect apocalypse, and why it matters. Current Biology, 29, R967–R971.

    Article  PubMed  Google Scholar 

  • Hansson, B. S., & Stensmyr, M. C. (2011). Evolution of insect olfaction. Neuron, 72(5), 698–711.

    Article  PubMed  Google Scholar 

  • Hartenstein, V. (1997). Development of the insect stomatogastric nervous system. Trends in Neurosciences, 20, 421–427.

    Article  PubMed  Google Scholar 

  • Hoyle, G. (1986). Glial cells of an insect ganglion. The Journal of Comparative Neurology, 246, 85–103.

    Article  PubMed  Google Scholar 

  • Hrbácek, J. (1949). On the morphology and function of the antennae of the central European Hydrophilidae (Coleoptera). Royal Entomological Society, 239–256.

    Google Scholar 

  • Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., Hammond, P. M., Ahrens, D., Balke, M., Caterino, M. S., Gómez-Zurita, J., Ribera, I., Barraclough, T. G., Bocakova, M., Bocak, L., & Vogler, A. P. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318(5858), 1913–1916.

    Article  PubMed  Google Scholar 

  • Jeram, S., & Cokl, A. (1996a). Mechanoreceptors in insects: Johnston’s organ in Nezara viridula (L.) (Pentatomidae, Heteroptera). Pflügers Archiv / European Journal of Physiology, 431, 281–282.

    Article  Google Scholar 

  • Jeram, S., & Pabst, M. A. (1996b). Johnston’s organ and central organ in Nezara viridula (L.) (Heteroptera, Pentatomidae). Tissue & Cell, 28(2), 227–235.

    Article  Google Scholar 

  • Keil, T. A. (1997). Functional morphology of insect mechanoreceptors. Microscopy Research and Technique, 39, 506–531.

    Article  PubMed  Google Scholar 

  • Liu, Z., & Friedrich, M. (2004). The Tribolium homologue of glass and the evolution of insect larval eyes. Developmental Biology, 269, 36–54.

    Article  PubMed  Google Scholar 

  • Marques, M. D. (2012). Anatomia interna e fisiologia. In J. A. Rafael, G. A. R. Melo, C. J. B. de Carvalho, S. A. Casari, & R. Constantino (Eds.), Insetos do Brasil: Diversidade e Taxonomia (pp. 33–80). Ribeirão Preto: Holos Editora.

    Google Scholar 

  • Mendes, C. S., Bartos, I., Akay, T., Marka, S., & Mann, R. S. (2013). Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife, 2, e00231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizunami, M. (1995). Information processing in the insect Ocellar system: Comparative approaches to the evolution of visual processing and neural circuits. Advances in Insect Physiology, 25, 151–265.

    Article  Google Scholar 

  • Mohapatra, P., & Menuz, K. (2019). Molecular profiling of the Drosophila antenna reveals conserved genes underlying olfaction in insects. G3 (Bethesda), 9, 3753–3771.

    Article  PubMed  Google Scholar 

  • Okada, J., & Toh, Y. (2000). The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). Journal of Comparative Physiology A, 186, 849–857.

    Article  Google Scholar 

  • Oland, L. A., & Tolbert, L. P. (2003). Key interactions between neurons and glial cells during neural development in insects. Annual Review of Entomology, 48, 89–110.

    Article  PubMed  Google Scholar 

  • Paulus, H. F. (1986). Comparative morphology of the larval eyes of Neuropteroidea. In J. Gepp, H. Aspock, & H. Holzel (Eds.), Recent research in neuropterology. Proc 2nd Symp Neuropterology, Hamburg, Graz (pp. 157–164).

    Google Scholar 

  • Pringle, J. W. S. (1938). Proprioception in insects III. The function of the hair sensilla at the joints. The Journal of Experimental Biology, 15, 467–473.

    Article  Google Scholar 

  • Ramirez, D. M., Spenser, D. I., Pankey, S. M., & Oakley, T. H. (2011). Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Visual Neuroscience, 28(04), 265–279.

    Google Scholar 

  • Saint Marie, R. L., Carlson, S. D., & Chi, C. (1984). The glial cells of insects. In R. C. King & H. Akai (Eds.), Insect ultrastructure (pp. 243–275). Boston: Springer.

    Google Scholar 

  • Sane, S. P., & McHenry, M. J. (2009). The biomechanics of sensory organs. Integrative and Comparative Biology, 49(6), 8–23.

    Article  Google Scholar 

  • Schmidt, K. (1972). Vergleichende morphologische Untesuchungen am Johnstonschen Organ der Insekten. Habilitationsschrift der Naturwisswnschaftlichen Fakultfät der Johannes Gutenberg- Universität Mainz. 1–104.

    Google Scholar 

  • Schnaitmann, C., Pagni, M., & Reiff, D. F. (2020). Color vision in insects: Insights from Drosophila. Journal of Comparative Physiology. A, 206, 183–198.

    Article  Google Scholar 

  • Schneider, D. (1964). Insect antennae. Annual Review of Entomology, 9, 103–122.

    Article  Google Scholar 

  • Snodgrass, R. E. (1926). The morphology of insect’s sense organs and the sensory nervous system. Smithsonian Miscellaneous Collections, 77(8), 1–80.

    Google Scholar 

  • Stadler, E. (1984). Contact chemoreception. In W. J. Bell & R. T. CardC (Eds.), Chemical ecology of insects (pp. 3–35). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Triplehorn, C. A., & Johnson, N. F. (2005). Borror and Delong’s introductions to the study of insects (7th ed., 864pp). Belmont: Thompson-Brooks/Cole.

    Google Scholar 

  • Tuthill, J. C., & Wilson, R. I. (2016). Mechanosensation and adaptive motor control in insects. Current Biology, 26(20), 1022–1038.

    Article  Google Scholar 

  • Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383, 75–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams, C. M. (1956). The juvenile hormone of insects. Nature, 178(4526), 212–213.

    Article  Google Scholar 

  • Williams, C. M. (1959). The juvenile hormone. I. Endocrine activity of the corpora allata of the adult Cecropia silkworm. The Biological Bulletin, 116(2), 323–338.

    Article  Google Scholar 

  • Wilson, M. (1978). The functional organisation of locust ocelli. Journal of Comparative Physiology, 124, 297–316.

    Article  Google Scholar 

  • Yack, J. E. (2004). The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique, 63, 315–337.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Souto, P.M., Antunes, A.F., Nunes, V.C.S. (2022). Insect Sensory System. In: Vonk, J., Shackelford, T.K. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-55065-7_1138

Download citation

Publish with us

Policies and ethics