Skip to main content

Online Trajectory Planning in ROS Under Kinodynamic Constraints with Timed-Elastic-Bands

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 707))

Abstract

This tutorial chapter provides a comprehensive and extensive step-by-step guide on the ROS setup of a differential-drive as well as a car-like mobile robot with the navigation stack in conjunction with the teb_local_planner package. It covers the theoretical foundations of the TEB local planner, package details, customization and its integration with the navigation stack and the simulation environment. This tutorial is designated for ROS Kinetic running on Ubuntu Xenial (16.04) but the examples and code also work with Indigo, Jade and is maintained in future ROS distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    teb_local_planner, URL: http://wiki.ros.org/teb_local_planner.

  2. 2.

    ROS navigation, URL: http://wiki.ros.org/navigation.

  3. 3.

    teb_local_planner, online-video, URL: https://youtu.be/e1Bw6JOgHME.

  4. 4.

    teb_local_planner extensions, online-video, URL: https://youtu.be/o5wnRCzdUMo.

  5. 5.

    Conventions for names of common coordinate frames in ROS are listed here: http://www.ros.org/reps/rep-0105.html.

  6. 6.

    libg2o, URL: http://wiki.ros.org/libg2o.

  7. 7.

    The move_base node (navigation stack) provides a parameter controller_frequency to adjust the sampling interval.

  8. 8.

    rviz, URL: http://wiki.ros.org/rviz.

  9. 9.

    Adopted from the move_base wiki page, URL: http://wiki.ros.org/move_base.

  10. 10.

    amcl, URL: http://wiki.ros.org/amcl.

  11. 11.

    costmap_converter, URL: http://wiki.ros.org/costmap_converter.

  12. 12.

    interactive_markers, URL: http://wiki.ros.org/interactive_markers.

  13. 13.

    stage_ros, URL: http://wiki.ros.org/stage_ros.

  14. 14.

    gazebo_ros_pkgs, URL: http://wiki.ros.org/gazebo_ros_pkgs.

  15. 15.

    Borrowed from the turtlebot_stage package: http://wiki.ros.org/turtlebot_stage.

  16. 16.

    costmap_2d, URL: http://wiki.ros.org/costmap_2d.

References

  1. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., and T. Bertram. 2012. Trajectory modification considering dynamic constraints of autonomous robots. In 7th German Conference on Robotics (ROBOTIK), 74–79.

    Google Scholar 

  2. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., and T. Bertram. 2013. Efficient trajectory optimization using a sparse model. In 6th European Conference on Mobile Robots (ECMR), 138–143.

    Google Scholar 

  3. Rösmann, C., Hoffmann, F., and T. Bertram. 2015. Planning of multiple robot trajectories in distinctive topologies. In IEEE European Conference on Mobile Robots, 1–6.

    Google Scholar 

  4. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and W. Burgard. 2011. G2o: A general framework for graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3607–3613.

    Google Scholar 

  5. Nocedal, J., and S.J. Wright. 1999. Numerical Optimization., Springer series in operations research New York: Springer.

    Book  MATH  Google Scholar 

  6. Morari, M., and J.H. Lee. 1999. Model predictive control: past, present and future. Computers and Chemical Engineering 23 (4–5): 667–682.

    Article  Google Scholar 

  7. Bhattacharya, S., Kumar, V., and M. Likhachev. 2010. Search-based path planning with homotopy class constraints. In Proceedings of National Conference on Artificial Intelligence.

    Google Scholar 

  8. Guimarães, R.L., de Oliveira, A.S., Fabro, J.A., Becker, T., and V.A. Brenner. 2016. ROS Navigation: Concepts and Tutorial. In Robot Operating System (ROS) - The Complete Reference (A. Koubaa, ed.), vol. 625 of Studies in Computational Intelligence, pp. 121–160, Springer International Publishing.

    Google Scholar 

  9. LaValle, S.M. 2006. Planning Algorithms. New York, USA: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rösmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rösmann, C., Hoffmann, F., Bertram, T. (2017). Online Trajectory Planning in ROS Under Kinodynamic Constraints with Timed-Elastic-Bands. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-319-54927-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54927-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54926-2

  • Online ISBN: 978-3-319-54927-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics