Skip to main content

Dengue Virus and Other Flaviviruses (Zika): Biology, Pathogenesis, Epidemiology, and Vaccine Development

  • Chapter
  • First Online:
Human Virology in Latin America

Abstract

Dengue is the mosquito-borne viral disease that is most important to humans. In the Americas, a region highly endemic for dengue, all four serotypes circulate. Accordingly, many researchers in the region have devoted their efforts to the study and control of this disease. Research carried out in the region has significantly helped in the understanding of dengue virus entry, genome replication, host cell factors required for replication, and mechanisms of pathogenesis. Also, some relevant contributions to the sequence and structures of the 3′-untranslated region (3′-UTR) of the viral genome in different hosts and immune responses and the pathogenesis of the virus have been described. Finally, the molecular epidemiology of dengue virus in Latin America has been extensively studied, and the region has participated actively in the development of dengue vaccines. Currently, the region faces the Zika emergency as a major health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta EG, Castilla V, Damonte EB (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549

    Article  CAS  PubMed  Google Scholar 

  2. Acosta EG, Castilla V, Damonte EB (2012) Differential requirements in endocytic trafficking for penetration of dengue virus. PLoS One 7:e44835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Acosta EG, Castilla V, Damonte EB (2011) Infectious dengue-1 virus entry into mosquito C6/36 cells. Virus Res 160:173–179

    Article  CAS  PubMed  Google Scholar 

  4. Acosta PO, Granja F, Meneses CA et al (2014) False-negative dengue cases in Roraima, Brazil: an approach regarding the high number of negative results by NS1 ag kits. Rev Inst Med Trop Sao Paulo 56:447–450

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agis-Juarez RA, Galvan I, Medina F et al (2009) Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol 90:2893–2901

    Article  CAS  PubMed  Google Scholar 

  6. Aguirre S, Maestre AM, Pagni S et al (2012) DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8:e1002934

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alcala AC, Medina F, Gonzalez-Robles A et al (2016) The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology 488:278–287

    Article  CAS  PubMed  Google Scholar 

  8. Alcaraz-Estrada SL, Yocupicio-Monroy M, del Angel RM (2010) Insights into dengue virus genome replication. Future Virol 5:575–592

    Article  CAS  Google Scholar 

  9. Alfonso HL, Amarilla AA, Goncalves PF et al (2012) Phylogenetic relationship of dengue virus type 3 isolated in Brazil and Paraguay and global evolutionary divergence dynamics. Virol J 9:1–16

    Article  Google Scholar 

  10. Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV (2005) Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339:200–212

    Article  CAS  PubMed  Google Scholar 

  11. Alvare DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643

    Article  CAS  Google Scholar 

  12. Amorim JH, Diniz MO, Cariri FA et al (2011) Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine 30:837–845

    Article  PubMed  CAS  Google Scholar 

  13. Aquino VH, Amarilla AA, Alfonso HL et al (2009) New genotype of dengue type 3 virus circulating in Brazil and Colombia showed a close relationship to old asian viruses. PLoS One 4:1–8

    Article  CAS  Google Scholar 

  14. Aragão MFV, van der Linden V, Brainer-Lima AM et al (2016) Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ 353:i1901

    Article  Google Scholar 

  15. Araújo FM, Araújo MS, Nogueira RM et al (2012) Central nervous system involvement in dengue: a study in fatal cases from a dengue endemic area. Neurology 78:736–472

    Article  PubMed  Google Scholar 

  16. Araújo JM, Gomes GM, Costa Faria NR (2012) Evaluation of a generic RT-nested-PCR for detection of flaviviruses in suspected fatal cases of dengue infection, Rio de Janeiro, Brazil. J Virol Methods 186:167–170

    Article  PubMed  CAS  Google Scholar 

  17. Araújo LM, Ferreira ML, Nascimento OJ (2016) Guillain-Barré syndrome associated with the Zika virus outbreak in Brazil. Arq Neuropsiquiatr 74:253–255

    Article  PubMed  Google Scholar 

  18. Araúz D, De Urriola L, Jones J et al (2016) Febrile or exanthematous illness associated with Zika, Dengue, and Chikungunya viruses, Panama. Emerg Infect Dis 22(8):1515–1517

    Article  PubMed  PubMed Central  Google Scholar 

  19. Araúz MJ, Ridde V, Hernández LM et al (2015) Developing a social autopsy tool for dengue mortality: a pilot study. PLoS One 10:e0117455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Arellanos-Soto D, Cruz V, Mendoza-Tavera N et al (2015) Constant risk of dengue virus infection by blood transfusion in an endemic area in Mexico. Transfus Med 25:122–124

    Article  CAS  PubMed  Google Scholar 

  21. Arzuza-Ortega L, Polo A, Pérez-Tatis G et al (2016) Fatal sickle cell disease and Zika virus infection in girl from Colombia. Emerg Infect Dis 22:925–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Azeredo EL, Zagne SM, Santiago MA et al (2001) Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 204:494–507

    Article  CAS  PubMed  Google Scholar 

  23. Azevedo AS, Gonçalves AJ, Archer M et al (2013) The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue. PLoS One 8:e58357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azevedo AS, Yamamura AM, Freire MS et al (2011) DNA vaccines against dengue virus type 2 based on truncate envelope protein or its domain III. PLoS One 6:e20528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baca-Carrasco D, Velasco-Hernández JX (2016) Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics. Bull Math Biol 78:2228–2242

    Article  PubMed  Google Scholar 

  26. Barros VE, dos Santos-Junior NN, Amarilla AA et al (2015) Differential replicative ability of clinical dengue virus isolates in an immunocompetent C57BL/6 mouse model. BMC Microbiol 15:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Belle EA, King SD, Griffiths BB et al (1980) Epidemiological investigation for arboviruses in Jamaica, West Indies. Am J Trop Med Hyg 29:667–675

    Article  CAS  PubMed  Google Scholar 

  28. Bingham AM, Cone M, Mock V et al (2016) Comparison of test results for Zika virus RNA in urine, serum, and saliva specimens from persons with travel-associated Zika virus disease – Florida, 2016. MMWR Morb Mortal Wkly Rep 65:475–478

    Google Scholar 

  29. Braga C, Albuquerque MF, Cordeiro MT et al (2016) Prospective birth cohort in a hyperendemic dengue area in Northeast Brazil: methods and preliminary results. Cad Saude Publica 32: pii: S0102-311X2016000100601

    Google Scholar 

  30. Branco MS, Sousa DM, Monteiro JD et al (2015) Dengue in the State of Rio Grande do Norte, Brazil, 2010-2012. Trop Med Int Health 20:1707–1710

    Article  PubMed  Google Scholar 

  31. Brasil P, Sequeira PC, Freitas AD et al (2016) Guillain-Barré syndrome associated with Zika virus infection. Lancet 387:1482

    Article  PubMed  Google Scholar 

  32. Brasil P, Pereira JP Jr, Raja Gabaglia C et al (2016) Zika virus infection in pregnant women in Rio de Janeiro: preliminary report. N Engl J Med 375:2321–2334

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bressanelli S, Stiasny K, Allison SL et al (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buonora SN, Passos SR, Carmo CN et al (2016) Accuracy of clinical criteria and an immunochromatographic strip test for dengue diagnosis in a DENV-4 epidemic. BMC Infect Dis 16:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Byk LA, Iglesias NG, De Maio FA et al (2016) Dengue virus genome uncoating requires ubiquitination. mBio 7

    Google Scholar 

  36. Cabrera-Romo S, Max Ramirez C, Recio-Totoro B et al (2016) No evidence of dengue virus infections in several species of bats captured in central and southern Mexico. Zoonoses Public Health 63:579–583

    Article  CAS  PubMed  Google Scholar 

  37. Cabrera-Romo S, Recio-Totoro B, Alcala AC et al (2014) Experimental inoculation of Artibeus jamaicensis bats with dengue virus serotypes 1 or 4 showed no evidence of sustained replication. Am J Trop Med Hyg 91:1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calvet G, Aguiar RS, Melo AS et al. (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis pii: S1473-3099(16)00095-5

    Google Scholar 

  39. Camacho E, Paternina-Gomez M, Blanco PJ et al (2016) Detection of autochthonous Zika virus transmission in Sincelejo, Colombia. Emerg Infect Dis 22:927–929

    Article  PubMed  PubMed Central  Google Scholar 

  40. Camargo S (1967) History of Aedes aegypti eradication in the Americas. Bull World Health Organ 36:602–603

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Campos GS, Bandeira AC, Sardi SI (2015) Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21:1885–1886

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cao-Lormeau VM, Roche C, Teissier A et al (2014) Zika virus, French Polynesia, South pacific, 2013. Emerg Infect Dis 20:1085–1086

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carneiro AR, Cruz AC, Vallinoto M (2012) Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory. Mem Inst Oswaldo Cruz 107:805–812

    Article  PubMed  Google Scholar 

  44. Castro Rodríguez R, Carrasquilla G, Porras A et al (2016) The burden of dengue and the financial cost to Colombia, 2010-2012. Am J Trop Med Hyg 94:1065–1072

    Article  PubMed  Google Scholar 

  45. Caufour PS, Motta MCA, Yamamura AMY et al (2001) Construction, characterization and immunogenicity of recombinant yellow fever 17D-dengue type 2 viruses. Virus Res 79:1–14

    Article  CAS  PubMed  Google Scholar 

  46. Cavalcanti LP, Braga DN, da Silva LM et al (2016) Postmortem diagnosis of dengue as an epidemiological surveillance tool. Am J Trop Med Hyg 94:187–192

    Article  CAS  PubMed  Google Scholar 

  47. Cavalheiro S, Lopez A, Serra S et al (2016) Microcephaly and Zika virus: neonatal neuroradiological aspects. Childs Nerv Syst 32:1057–1060

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ceballos-Olvera I, Chavez-Salinas S, Medina F et al (2010) JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology 396:30–36

    Article  CAS  PubMed  Google Scholar 

  49. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature (Lond) 453:672–676

    Article  CAS  Google Scholar 

  50. Chen Y, Maguire T, Hileman RE et al (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871

    Article  CAS  PubMed  Google Scholar 

  51. Chen YC, Wang SY, King CC (1999) Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Costa SD, da Silva GB Jr, Jacinto CN et al (2015) Dengue fever among renal transplant recipients: a series of 10 cases in a tropical country. Am J Trop Med Hyg 93:394–396

    Article  PubMed  PubMed Central  Google Scholar 

  54. Costa SM, Azevedo AS, Paes MV (2007) DNA vaccines against dengue virus based on the ns1 gene: the influence of different signal sequences on the protein expression and its correlation to the immune response elicited in mice. Virology 358:413–423

    Article  CAS  PubMed  Google Scholar 

  55. Costa SM, Yorio AP, Gonçalves AJ et al (2011) Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PLoS One 6:e25685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Costa VG, Marques-Silva AC, Moreli ML (2014) A meta-analysis of the diagnostic accuracy of two commercial NS1 antigen ELISA tests for early dengue virus detection. PLoS One 9:e94655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cruz CD, Forshey BM, Juarez DS et al (2013) Molecular epidemiology of American/Asian genotype DENV-2 in Peru. Infect Genet Evol 18:220–228

    Article  CAS  PubMed  Google Scholar 

  58. Cugola FR, Fernandes IR, Russo FB et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature (Lond) 534:267–271

    CAS  Google Scholar 

  59. Daumas RP, Passos SR, Oliveira RV et al (2013) Clinical and laboratory features that discriminate dengue from other febrile illnesses: a diagnostic accuracy study in Rio de Janeiro, Brazil. BMC Infect Dis 13:77

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dayan G, Arredondo JL, Carrasquilla G (2015) Prospective cohort study with active surveillance for fever in four dengue endemic countries in Latin America. Am J Trop Med Hyg 93:18–23

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dayan GH, Garbes P, Noriega F et al (2013) Immunogenicity and safety of a recombinant tetravalent dengue vaccine in children and adolescents ages 9–16 years in Brazil. Am J Trop Med Hyg 89:1058–1065

    Article  PubMed  PubMed Central  Google Scholar 

  62. De La Cruz Hernandez SI, Puerta-Guardo H, Flores-Aguilar H et al (2014) A strong interferon response correlates with a milder dengue clinical condition. J Clin Virol 60:196–199

    Article  CAS  Google Scholar 

  63. De Nova-Ocampo M, Villegas-Sepulveda N, del Angel RM (2002) Translation elongation factor-1alpha, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA. Virology 295:337–347

    Article  PubMed  CAS  Google Scholar 

  64. de Thoisy B, Lacoste V, Germain A et al (2009) Dengue infection in neotropical forest mammals. Vector Borne Zoonotic Dis 9:157–170

    Article  PubMed  Google Scholar 

  65. Dhalia R, Maciel M Jr, Cruz FS et al (2009) Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses. An Acad Bras Cienc 81:663–669

    Article  CAS  PubMed  Google Scholar 

  66. Díaz-Quiñonez JA, Escobar-Escamilla N, Wong-Arámbula C et al (2016) Asian genotype Zika virus detected in traveler returning to Mexico from Colombia, October 2015. Emerg Infect Dis 22:937–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dirlikov E, Ryff KR, Torres-Aponte J et al (2016) Update: Ongoing Zika virus transmission–Puerto Rico, November 1, 2015–April 14. MMWR Morb Mortal Wkly Rep 65:451–455

    Article  PubMed  Google Scholar 

  68. Dorigatti I, Aguas R, Donnelly CA et al (2015) Modelling the immunological response to a tetravalent dengue vaccine from multiple phase-2 trials in Latin America and South East Asia. Vaccine 33:3746–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dowd KA, Ko SY, Morabito KM et al (2016) Rapid development of a DNA vaccine for Zika virus. Science 354:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Drumond B, Mondini A, Schmidt D et al (2013) Circulation of different lineages of Dengue virus 2, genotype American/Asian in Brazil: dynamics and molecular and phylogenetic characterization. PLoS One 8:e59422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duffy MR, Chen TH, Hancock WT et al (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543

    Article  CAS  PubMed  Google Scholar 

  72. Durbin AP, Kirkpatrick BD, Pierce KK et al (2011) Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine. Vaccine 29:7242–7250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Durbin AP, Kirkpatrick BD, Pierce KK et al (2016) A 12-month-interval dosing study in adults indicates that a single dose of the National Institutes of Allergy and Infectious Diseases tetravalent dengue vaccine induces a robust neutralizing antibody response. J Infect Dis 214(6):832–835. pii: jiw067

    Article  PubMed  Google Scholar 

  74. Faria NRC, Nogueira RM, de Filippis AMB et al (2013) Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS Negl Trop Dis 7:e2095

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fernandes NC, Nogueira JS, Réssio RA et al. (2016) Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp Toxicol Pathol pii: S0940-2993(16)30330-X

    Google Scholar 

  76. Ferreira RA, de Oliveira SA, Gandini M et al (2015) Circulating cytokines and chemokines associated with plasma leakage and hepatic dysfunction in Brazilian children with dengue fever. Acta Trop 149:138–147

    Article  CAS  PubMed  Google Scholar 

  77. Filomatori CV, Iglesias NG, Villordo SM et al (2011) RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem 286:6929–6939

    Article  CAS  PubMed  Google Scholar 

  78. Filomatori CV, Lodeiro MF, Alvarez DE et al (2006) A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fontes CA, Dos Santos AA, Marchiori E (2016) Magnetic resonance imaging findings in Guillain-Barré syndrome caused by Zika virus infection. Neuroradiology 58(8):837–838

    Article  PubMed  Google Scholar 

  80. Fried JR, Gibbons RV, Kalayanarooj S et al (2010) Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 4:e617

    Article  PubMed  PubMed Central  Google Scholar 

  81. Galler R, Marchevsky RS, Caride E et al (2005) Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys. Braz J Med Biol Res 38:1835–1846

    Article  CAS  PubMed  Google Scholar 

  82. Garcez PP, Loiola EC, Madeiro da Costa R et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818

    Article  CAS  PubMed  Google Scholar 

  83. García-Machorro J, López-González M, Barrios-Rojas O et al (2013) DENV-2 subunit proteins fused to CR2 receptor-binding domain (P28)-induces specific and neutralizing antibodies to the Dengue virus in mice. Hum Vaccin Immunother 9:2326–2335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879–882

    Article  CAS  PubMed  Google Scholar 

  85. Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Viruses 3:1739–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gil L, Izquierdo A, Lazo L et al (2014) Capsid protein: evidences about the partial protective role of neutralizing antibody-independent immunity against dengue in monkeys. Virology 456-457:70–76

    Article  CAS  PubMed  Google Scholar 

  87. Gil L, López C, Lazo L et al (2009) Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice. Int Immunol 21:1175–1183

    Article  CAS  PubMed  Google Scholar 

  88. Giovanetti M, Faria NR, Nunes MR et al (2016) Zika virus complete genome from Salvador, Bahia, Brazil. Infect Genet Evol 41:142–145

    Article  CAS  PubMed  Google Scholar 

  89. Gonçalves AJ, Oliveira ER, Costa SM et al (2015) Cooperation between CD4+ T cells and humoral immunity is critical for protection against dengue using aDNA vaccine based on the NS1 antigen. PLoS Negl Trop Dis 9:e0004277

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grange L, Simon-Loriere E, Sakuntabhai A et al (2014) Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 5:280

    Article  PubMed  PubMed Central  Google Scholar 

  91. Guerrero CD, Arrieta AF, Ramirez ND et al (2013) High plasma levels of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue. Cytokine 61:766–771

    Article  CAS  PubMed  Google Scholar 

  92. Hadinegoro SR, Arredondo-García JL, Capeding MR et al (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373:1195–1206

    Article  CAS  PubMed  Google Scholar 

  93. Halstead SB (2014) Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2

    Google Scholar 

  94. Hazin AN, Poretti A, Cruz DD et al (2016) Computed tomographic findings in microcephaly associated with Zika virus. N Engl J Med 374:2193–2195

    Article  PubMed  Google Scholar 

  95. Heringer M, Nogueira RM, de Filippis AM et al (2015) Impact of the emergence and re-emergence of different dengue viruses' serotypes in Rio de Janeiro, Brazil, 2010 to 2012. Trans R Soc Trop Med Hyg 109:268–274

    Article  PubMed  Google Scholar 

  96. Hernández-Ávila M, Lazcano-Ponce E, Hernández-Ávila JE et al (2016) Analysis of the evidence on the efficacy and safety of CYD-TDV dengue vaccine and its potential licensing and implementation through Mexico's Universal Vaccination Program. Salud Publica Mex 58:71–83

    Article  PubMed  Google Scholar 

  97. Hills S, Russell K, Hennessey M et al (2016) Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission-continental United States, 2016. MMWR Morb Mortal Wkly Rep 65:215–216

    Article  PubMed  Google Scholar 

  98. Huang CY, Butrapet S, Tsuchiya KR et al (2003) Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 77:11436–11447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iglesias NG, Mondotte JÁ, Byk LA et al (2015) Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 16:962–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jaenisch T, Tam DT, Kieu NT et al (2016) Clinical evaluation of dengue and identification of risk factors for severe disease: protocol for a multicentre study in 8 countries. BMC Infect Dis 16(1):20

    Article  Google Scholar 

  101. Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927

    Article  CAS  PubMed  Google Scholar 

  102. Junjhon J, Pennington JG, Edwards TJ et al (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88:4687–4697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Katzelnick LC, Montoya M, Gresh L et al (2016) Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci U S A 113:728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kikuti M, Cunha GM, Paploski IA et al (2015) Spatial distribution of dengue in a Brazilian urban slum setting: role of socioeconomic gradient in disease risk. PLoS Negl Trop Dis 9:e0003937

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kourí G, Guzmán MG, Bravo J (1986) Hemorrhagic dengue in Cuba: history of an epidemic. Bull Pan Am Health Organ 20:24–30

    PubMed  Google Scholar 

  106. Kuadkitkan A, Wikan N, Fongsaran C, Smith DR (2010) Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 406:149–161

    Article  CAS  PubMed  Google Scholar 

  107. Lanata CF, Andrade T, Gil A et al (2012) Immunogenicity and safety of tetrava-lent dengue vaccine in 2–11-year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru. Vaccine 30:5935–5941

    Article  CAS  PubMed  Google Scholar 

  108. Larocca RA, Abbink P, Peron JP et al (2016) Vaccine protection against Zika virus from Brazil. Nature (Lond) 536:474–478

    Article  CAS  Google Scholar 

  109. Lazo L, Hermida L, Zulueta A et al (2007) A recombinant capsid protein from Dengue-2 induces protection in mice against homologous virus. Vaccine 25:1064–1070

    Article  CAS  PubMed  Google Scholar 

  110. Lednicky J, Beau de Rochars VM, El Badry M et al (2016) Zika virus outbreak in Haiti in 2014: molecular and clinical data. PLoS Negl Trop Dis 10:e0004687

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee CJ, Lin HR, Liao CL, Lin YL (2008) Cholesterol effectively blocks entry of flavivirus. J Virol 82:6470–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li Z, Khaliq M, Zhou Z et al (2008) Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem 51:4660–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lima DM, de Paula SO, França RF (2011) A DNA vaccine candidate encoding the structural prM/E proteins elicits a strong immune response and protects mice against dengue-4 virus infection. Vaccine 29:831–838

    Article  CAS  PubMed  Google Scholar 

  114. Lodeiro MF, Filomatori CV, Gamarnik AV (2009) Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83:993–1008

    Article  CAS  PubMed  Google Scholar 

  115. López C, Gil L, Lazo L et al (2009) In vitro assembly of nucleocapsid-like particles from purified recombinant capsid protein of dengue-2 virus. Arch Virol 154:695–698

    Article  PubMed  CAS  Google Scholar 

  116. Luna DM, Oliveira MD, Nogueira ML et al (2014) Biosensor based on lectin and lipid membranes for detection of serum glycoproteins in infected patients with dengue. Chem Phys Lipids 180:7–14

    Article  CAS  PubMed  Google Scholar 

  117. Luria-Perez R, Cedillo-Barron L, Santos-Argumedo L et al (2007) A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 25:5071–5085

    Article  CAS  PubMed  Google Scholar 

  118. Mackow ER, Makino Y, Zhao BT et al (1987) The nucleotide sequence of dengue type 4 virus: analysis of genes coding for nonstructural proteins. Virology 159:217–228

    Article  CAS  PubMed  Google Scholar 

  119. Manzano M, Reichert ED, Polo S et al (2011) Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 286:22521–22534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Martelli CMT, Siqueira JB Jr, MPPD P et al (2015) Economic impact of dengue: multicenter study across four Brazilian regions. PLoS Negl Trop Dis 9:e0004042

    Article  PubMed  PubMed Central  Google Scholar 

  121. Martina BE, Koraka P, Osterhaus AD (2009) Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22:564–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martínez CA, Topal E, Giulietti AM et al (2010) Exploring different strategies to express Dengue virus envelope protein in a plant system. Biotechnol Lett 32:867–875

    Article  PubMed  CAS  Google Scholar 

  123. Mateu GP, Marchevsky RS, Liprandi F et al (2007) Construction and biological properties of yellow fever 17D/dengue type 1 recombinant virus. Trans R Soc Trop Med Hyg 101:289–298

    Article  CAS  PubMed  Google Scholar 

  124. Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225:300–133

    Article  CAS  PubMed  Google Scholar 

  125. Meertens L, Carnec X, Lecoin MP et al (2012) The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mellado-Sánchez G, García-Cordero J, Luria-Pérez R (2005) DNA priming E and NS1 constructs: homologous proteins boosting immunization strategy to improve immune response against dengue in mice. Viral Immunol 18:709–721

    Article  PubMed  Google Scholar 

  127. Mellado-Sánchez G, García-Machorro J, Sandoval-Montes C et al (2010) A plasmid encoding parts of the dengue virus E and NS1 proteins induces an immune response in a mouse model. Arch Virol 155:847–856

    Article  PubMed  CAS  Google Scholar 

  128. Melo AS, Aguiar RS, Amorim MM et al (2016) Congenital Zika virus infection: beyond neonatal microcephaly. JAMA Neurol 73(12):1407–1416. doi:10.1001/jamaneurol.2016.3720

  129. Mercado-Curiel RF, Black WC, Munoz ML (2008) A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 8:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Mercado-Curiel RF, Esquinca-Aviles HA, Tovar R et al (2006) The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol 6:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Miranda HA, Costa MC, Frazão MA et al (2016) Expanded spectrum of congenital ocular findings in microcephaly with presumed Zika infection. Ophthalmology 123:1788–1794

    Article  PubMed  Google Scholar 

  132. Miranda-Filho DB, Martelli CM, Ximenes RA et al (2016) Initial description of the presumed congenital Zika syndrome. Am J Public Health 106:598–600

    Article  Google Scholar 

  133. Mlakar J, Korva M, Tul N et al (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958

    Article  CAS  PubMed  Google Scholar 

  134. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature (Lond) 427:313–319

    Article  CAS  Google Scholar 

  135. Moore C, Staples JE, Dobyns WB et al (2016) Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. doi:10.1001/jamapediatrics.2016.3982

  136. Moron AF, Cavalheiro S, Milani H et al (2016) Microcephaly associated with maternal Zika virus infection. Br J Obstet Gynecol 123(8):1265–1269

    Article  CAS  Google Scholar 

  137. Morrison J, Laurent-Rolle M, Maestre AM et al (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9:e1003265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mosso C, Galvan-Mendoza IJ, Ludert JE, del Angel RM (2008) Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193–199

    Article  CAS  PubMed  Google Scholar 

  139. Mota J, Acosta M, Argotte R et al (2005) Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 23:3469–3476

    Article  CAS  PubMed  Google Scholar 

  140. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  CAS  PubMed  Google Scholar 

  141. Munoz-Jordan JL, Fredericksen BL (2010) How flaviviruses activate and suppress the interferon response. Viruses 2:676–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Munoz-Jorda JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338

    Article  CAS  Google Scholar 

  143. Musso D, Roche C, Nhan TX et al (2016) Detection of Zika virus in saliva. J Clin Virol 68:53–55

    Article  Google Scholar 

  144. Musso D (2015) Zika virus transmission from French Polynesia to Brazil. Emerg Infect Dis 21:1887

    Article  PubMed  PubMed Central  Google Scholar 

  145. Navarro-Sanchez E, Altmeyer R, Amara A et al (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nishiura H, Mizumoto K, Villamil-Gómez WE et al (2016) Preliminary estimation of the basic reproduction number of Zika virus infection during Colombia epidemic, 2015–2016. Travel Med Infect Dis pii: S1477-8939(16)30008-4

    Google Scholar 

  147. Nogueira RM, Filippis AM, Coelho JM et al (2002) Dengue virus infection of the central nervous system (CNS): a case report from Brazil. Southeast Asian J Trop Med Public Health 3:68–71

    Google Scholar 

  148. Nogueira RM, Miagostovich MP, de Filippis AM et al (2001) Dengue virus type 3 in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 96:925–926

    Article  CAS  PubMed  Google Scholar 

  149. Nogueira RM, Miagostovich MP, Lampe E et al (1990) Isolation of dengue virus type 2 in Rio de Janeiro. Mem Inst Oswaldo Cruz 85:253

    Article  CAS  PubMed  Google Scholar 

  150. Noisakran S, Perng GC (2008) Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp Biol Med 233:401–408

    Article  CAS  Google Scholar 

  151. Noronha L, Zanluca C, Azevedo ML et al (2016) Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. pii: S0074–02762016005006103

    Google Scholar 

  152. Nunes PC, Paes MV, de Oliveira CA et al (2016) Detection of dengue NS1 and NS3 proteins in placenta and umbilical cord in fetal and maternal death. J Med Virol 88(8):1448–1452

    Article  CAS  PubMed  Google Scholar 

  153. Ocazionez-Jiménez RE, Ortiz-Báez AS, Gómez-Rangel SY et al (2013) Dengue virus serotype 1 (DENV-1) from Colombia: its contribution to dengue occurrence in Santander. Biomedica 33(suppl 1):22–30

    PubMed  Google Scholar 

  154. Oliveira ER, Amorim JF, Paes MV et al (2016) Peripheral effects induced in BALB/c mice infected with DENV by the intracerebral route. Virology 489:95–107

    Article  CAS  PubMed  Google Scholar 

  155. Oliveira Melo AS, Malinger G, Ximenes R et al (2016) Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol 47:6–7

    Article  CAS  PubMed  Google Scholar 

  156. Osanai CH, Travassos da Rosa AP, Tang AT, do Amaral RS, Passos AD et al (1983) Dengue outbreak in Boa Vista, Roraima. Preliminary report. Rev Inst Med Trop Sao Paulo 25:53–54

    CAS  PubMed  Google Scholar 

  157. Osorio L, Uribe M, Ardila GI et al (2015) The use of rapid dengue diagnostic tests in a routine clinical setting in a dengue-endemic area of Colombia. Mem Inst Oswaldo Cruz 110:510–516

    Article  PubMed  PubMed Central  Google Scholar 

  158. Pagliari C, Quaresma JA, Fernandes ER et al (2014) Immunopathogenesis of dengue hemorrhagic fever: contribution to the study of human liver lesions. J Med Virol 86:1193–1197

    Article  CAS  PubMed  Google Scholar 

  159. Pagliari C, Simões Quaresma JA, Kanashiro-Galo L et al (2016) Human kidney damage in fatal dengue hemorrhagic fever results of glomeruli injury mainly induced by IL17. J Clin Virol 75:16–20

    Article  CAS  PubMed  Google Scholar 

  160. Pagni S, Fernandez-Sesma A (2012) Evasion of the human innate immune system by dengue virus. Immunol Res 54:152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. PAHO (2013) Number of reported cases of dengue and dengue severe cases in the Americas by country. Available at: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=24677&Itemid. Accessed 05 Jun 2014

  162. PAHO (2016) Regional Zika Epidemiological update (Americas) December 1, 2016. http://www.paho.org/hq/index.php?option=com_content&id=11599&Itemid=41691. Date Accessed 06/12/2016.

  163. PAHO (1990) Dengue haemorrhagic fever in Venezuela. Epidemiol Bull 11:7–9

    Google Scholar 

  164. Paploski IA, Prates AP, Cardoso CW et al (2016) Time lags between exanthematous illness attributed to Zika virus, Guillain-Barré syndrome, and microcephaly, Salvador, Brazil. Emerg Infect Dis 22:1438–1444

    Article  PubMed  PubMed Central  Google Scholar 

  165. Parra B, Lizarazo J, Jiménez-Arango JA et al (2016) Guillain-Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med 375:1513–1523

    Article  PubMed  Google Scholar 

  166. Perera R, Riley C, Isaac G et al (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8:e1002584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pérez-Vélez ME, García-Nieves T, Colón-Sánchez C et al (2009) Induction of neutralization antibodies in mice by Dengue-2 envelope DNA vaccines. P R Health Sci J 28:239–250

    PubMed  PubMed Central  Google Scholar 

  168. Pinheiro FP, Corber SJ (1997) Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat 50:161–169

    CAS  Google Scholar 

  169. Pitha PM, Kunzi MS (2007) Type I interferon: the ever unfolding story. Curr Top Microbiol Immunol 316:41–70

    CAS  PubMed  Google Scholar 

  170. Poh MK, Shui G, Xie X et al (2012) U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antivir Res 93:191–198

    Article  CAS  PubMed  Google Scholar 

  171. Pone SM, Hökerberg YH, de Oliveira R et al (2016) Clinical and laboratory signs associated to severe dengue disease in hospitalized children. J Pediatr (Rio J) 92(5):464–471. 22. pii: S0021-7557(16)30022-5

    Article  Google Scholar 

  172. Póvoa TF, Alves AM, Oliveira CA et al (2014) The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 9:e83386

    Article  PubMed  PubMed Central  Google Scholar 

  173. Puerta-Guardo H, Mosso C, Medina F et al (2010) Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains. J Gen Virol 91:394–403

    Article  CAS  PubMed  Google Scholar 

  174. Puerta-Guardo H, Raya-Sandino A, González-Mariscal L et al (2013) The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability. J Virol 87:7486–7501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Google Scholar 

  176. Rivera J, Neira M, Parra E et al (2014) Detection of dengue virus antigen in post-mortem tissues. Biomedica 34:514–520

    Article  PubMed  Google Scholar 

  177. Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D et al (2010) Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 84:9760–9774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A (2010) Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol 84:4845–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rosário MS, Jesus PA, Vasilakis N et al (2016) Guillain-Barré syndrome after Zika virus infection in Brazil. Am J Trop Med Hyg 95:1157–1160

    Article  PubMed  Google Scholar 

  180. Rothwell C, Lebreton A, Young Ng C et al (2009) Cholesterol biosynthesis modulation regulates dengue viral replication. Virology 389:8–19

    Article  CAS  PubMed  Google Scholar 

  181. Sabchareon A, Wallace D, Sirivichayakul C et al (2012) Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380:1559–1567

    Article  CAS  PubMed  Google Scholar 

  182. Sabin AB, Schlesinger RW (1945) Production of immunity to dengue with virus modified by propagation in mice. Science 101:640–642

    Article  CAS  PubMed  Google Scholar 

  183. Sacramento RH, de Melo Braga DN, Sacramento FF et al (2014) Death by dengue fever in a Brazilian child: a case report. BMC Res Notes 7:855

    Article  PubMed  PubMed Central  Google Scholar 

  184. Salas-Benito J, Reyes-Del Valle J, Salas-Benito M et al (2007) Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am J Trop Med Hyg 77:283–290

    Google Scholar 

  185. Salas-Benito J, del Angel RM (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71:7246–7252

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sams MM, Mondotte JA, Caramelo JJ, Gamarnik AV (2012) Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J Virol 86:1046–1058

    Article  CAS  Google Scholar 

  187. Samsa MM, Mondotte JA, Iglesias NG et al (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. San Martin JL, Brathwaite O, Zambrano B et al (2010) The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82:128–135

    Article  PubMed  PubMed Central  Google Scholar 

  189. Santos T, Rodriguez A, Almiron M et al (2016) Zika virus and the Guillain-Barré syndrome: case series from seven countries. N Engl J Med 375:1598–1601

    Article  PubMed  Google Scholar 

  190. Sarmiento-Ospina A, Vásquez-Serna H, Jimenez-Canizales CE (2016) Zika virus associated deaths in Colombia. Lancet Infect Dis. pii: S1473-3099(16)30006-8

    Google Scholar 

  191. Sarti E, L’Azou M, Mercado M et al (2016) A comparative study on active and passive epidemiological surveillance for dengue in five countries of Latin America. Int J Infect Dis 44:44–49

    Article  PubMed  Google Scholar 

  192. Schatzmayr HG, Nogueira RMR, Travassos da Rosa APA (1986) An outbreak of dengue virus at Rio de Janeiro. Mem Inst Oswaldo Cruz 81:245–246

    Article  CAS  PubMed  Google Scholar 

  193. Schuler-Faccini L, Ribeiro EM, Feitosa IM et al (2016) Possible association between Zika virus infection and microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65:59–62

    Article  PubMed  Google Scholar 

  194. Shah A, Kumar A (2016) Zika virus infection and development of a murine model. Neurotox Res 30:131–134

    Article  PubMed  Google Scholar 

  195. Shurtleff AC, Beasley DW, Chen JJ et al (2001) Genetic variation in the 3′ non-coding region of dengue viruses. Virology 281:75–87

    Article  CAS  PubMed  Google Scholar 

  196. Sirivichayakul C, Barranco-Santana EA, Esquilin-Rivera I et al (2016) Safety and immunogenicity of a tetravalent dengue vaccine candidate in healthy children and adults in dengue-endemic regions: a randomized, placebo-controlled phase 2 study. J Infect Dis 213:1562–1572

    Article  PubMed  Google Scholar 

  197. Soto-Acosta R, Bautista-Carbajal P, Syed GH et al (2014) Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antivir Res 109:132–140

    Article  CAS  PubMed  Google Scholar 

  198. Soto-Acosta R, Mosso C, Cervantes-Salazar M et al (2013) The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity. Virology 442:132–147

    Article  CAS  PubMed  Google Scholar 

  199. Sotomayor-Bonilla J, Chaves A, Rico-Chavez O (2014) Dengue virus in bats from southeastern Mexico. Am J Trop Med Hyg 91:129–131

    Article  PubMed  PubMed Central  Google Scholar 

  200. Suzarte E, Gil L, Valdés I et al (2015) A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys. Int Immunol 27:367–379

    Article  CAS  PubMed  Google Scholar 

  201. Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. J Gen Virol 87:2755–2766

    Article  CAS  PubMed  Google Scholar 

  202. Tassaneetrithep B, Burgess TH, Granelli-Piperno A (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Teixeira MG (2012) Few characteristics of dengue’s fever epidemiology in Brazil. Rev Inst Med Trop Sao Paulo 54(suppl 18):S1–S4

    Article  PubMed  Google Scholar 

  204. Teixeira MG, Costa MC, Coelho G, Barreto ML et al (2008) Recent shift in age pattern of dengue hemorrhagic fever, Brazil. Emerg Infect Dis 14:1663

    Article  PubMed  PubMed Central  Google Scholar 

  205. Teixeira MG, Costa MCN, Barreto ML et al (2015) Epidemiologia da Dengue. In: Valle D (ed) Dengue: Teorias e práticas, 1st edn. Fiocruz, Rio de Janeiro, pp 293–315

    Google Scholar 

  206. Teixeira MG, Siqueira JB, Ferreira GLC et al (2013) Epidemiological trends of dengue disease in Brazil (2000–2010): a systematic literature search and analysis. PLoS Negl Trop Dis 7:e2520

    Article  PubMed  PubMed Central  Google Scholar 

  207. Temporão JG, Penna GO, Carmo EH et al (2011) Dengue virus serotype 4, Roraima State, Brazil. Emerg Infect Dis 17:938–940

    Article  PubMed  PubMed Central  Google Scholar 

  208. Torres AF, Braga DN, Muniz F et al (2013) Lymphocytic myocarditis at autopsy in patients with dengue fever. Braz J Infect Dis 17:619–621

    Article  PubMed  Google Scholar 

  209. Torres JR, Echezuría L, Fernández M et al (2015) Epidemiology and disease burden of pediatric dengue in Venezuela. J Pediatr Infect Dis Soc 4:288–289

    Google Scholar 

  210. Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398

    Article  CAS  PubMed  Google Scholar 

  211. Undurraga EA, Betancourt-Cravioto M, Ramos-Castañeda J et al (2015) Economic and disease burden of dengue in Mexico. PLoS Negl Trop Dis 9:e0003547

    Article  PubMed  PubMed Central  Google Scholar 

  212. Upanan S, Kuadkitkan A, Smith DR (2008) Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 151:325–328

    Article  CAS  PubMed  Google Scholar 

  213. Valdés I, Hermida L, Gil L, Lazo L et al (2010) Heterologous prime-boost strategy in non-human primates combining the infective dengue virus and a recombinant protein in a formulation suitable for human use. Int J Infect Dis 14:e377–e383

    Article  PubMed  Google Scholar 

  214. Vega-Almeida TO, Salas-Benito M, De Nova-Ocampo MA et al (2013) Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol 158:1189–1207

    Article  PubMed  CAS  Google Scholar 

  215. Ventura CV, Maia M, Bravo-Filho V et al (2016) Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 387:228

    Article  PubMed  Google Scholar 

  216. Ventura CV, Maia M, Ventura BV et al (2016) Ophthalmological findings in infants with microcephaly and presumable intra-uterus Zika virus infection. Arq Bras Oftalmol 79:1–3

    PubMed  Google Scholar 

  217. Ventura CV, Ventura LO, Bravo-Filho V et al (2016) Optical coherence tomography of retinal lesions in infants with congenital Zika syndrome. JAMA Ophthalmol 134(12):1420–1427. doi:10.1001/jamaophthalmol.2016.4283

  218. Vera-Polania F, Perilla-Gonzalez Y, Martinez-Pulgarin DF et al (2014) Bibliometric assessment of the Latin-American contributions in dengue. Recent Pat Antiinfect Drug Discov 9:195–201

    Article  CAS  PubMed  Google Scholar 

  219. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV (2016) RNA structure duplications and flavivirus host adaptation. Trends Microbiol 24:270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Villordo SM, Gamarnik AV (2013) Differential RNA sequence requirement for dengue virus replication in mosquito and mammalian cells. J Virol 87:9365–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Waggoner JJ, Balmaseda A, Gresh L, Sahoo MK, Montoya M, Wang C, Abeynayake J, Kuan G, Pinsky BA, Harris E (2016) Homotypic dengue virus reinfections in Nicaraguan children. J Infect Dis 214:986–993

    Article  PubMed  Google Scholar 

  222. Weaver SC, Vasilakis N (2009) Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol 9:523–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Welsch S, Miller S, Romero-Brey I et al (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375

    Article  CAS  PubMed  Google Scholar 

  224. Wenceslao Orellano P, Reynoso JI, Stahl HC et al (2016) Cost-utility analysis of dengue vaccination in a country with heterogeneous risk of dengue transmission. Vaccine 34:616–621

    Article  PubMed  Google Scholar 

  225. Wettstein ZS, Fleming M, Chang AY et al (2012) Total economic cost and burden of dengue in Nicaragua: 1996–2010. Am J Trop Med Hyg 87:616–622

    Article  PubMed  PubMed Central  Google Scholar 

  226. Williams M, Mayer SV, Johnson WL et al (2014) Lineage II of Southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. Am J Trop Med Hyg 91:611–620

    Article  PubMed  PubMed Central  Google Scholar 

  227. Yazi Mendoza M, Salas-Bentito JS, Lanz-Mendoza H, Hernandez-Martinez S, del Angel RM (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67:76–84

    Article  PubMed  Google Scholar 

  228. Yocupicio-Monroy M, Padmanabhan R, Medina F, del Angel RM (2007) Mosquito La protein binds to the 3′ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357:29–40

    Article  CAS  PubMed  Google Scholar 

  229. Yocupicio-Monroy M, Medina F, Reyes-del Valle J, del Angel RM (2003) Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3′ untranslated region RNA. J Virol 77:3067–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yu IM, Zhang W, Holdaway HA et al (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837

    Article  CAS  PubMed  Google Scholar 

  231. Zanluca C, Melo VC, Mosimann AL et al (2015) First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110:569–572

    Article  PubMed  PubMed Central  Google Scholar 

  232. Zellweger RM, Shresta S (2014) Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 5:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Zika Virus Net. http://www.zikavirusnet.com/clinical-trials.html. Accessed 07/12/2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ada M. B. Alves or Rosa M. del Angel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alves, A.M.B., del Angel, R.M. (2017). Dengue Virus and Other Flaviviruses (Zika): Biology, Pathogenesis, Epidemiology, and Vaccine Development. In: Ludert, J., Pujol, F., Arbiza, J. (eds) Human Virology in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-54567-7_8

Download citation

Publish with us

Policies and ethics