Skip to main content

Abstract

Petroleum, one of the most complex organic mixtures in nature, is derived from biochemicals deposited in sediments that are then buried and thermally altered. Petroleomics aims at a complete molecular description of petroleum, the petroleome, from which all physical properties – such as density, viscosity, phase behavior, and interfacial activity – and chemical reactivity – such as reservoir alteration and refinery upgrading processes – could be modeled. Although petroleomics has its roots in decades of petroleum chemical characterization, its modern conception is less than 20 years old. It is only through recent analytical advances, such as ultrahigh-resolution mass spectrometry, that an approximation of the petroleome is possible. The ability to use the petroleome to predict physical properties and chemical reactivity is just emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams RK, Zabarnick S, West ZJ, Striebich RC, Johnson DW (2013) Chemical analysis of jet fuel polar, heteroatomic species via high-performance liquid chromatography with electrospray ionization–mass spectrometric detection. Energy Fuels 27:2390–2398

    Article  CAS  Google Scholar 

  • Alshareef AH, Scherer A, Tan X, Azyat K, Stryker JM, Tykwinski RR, Gray MR (2012) Effect of chemical structure on the cracking and coking of archipelago model compounds representative of asphaltenes. Energy Fuels 26:1828–1843

    Article  CAS  Google Scholar 

  • Altgelt KH, Boduszynski MM (1993) Composition and analysis of heavy petroleum fractions. CRC Press, Boca Raton. 512 pp

    Book  Google Scholar 

  • Alvarez-Majmutov A, Chen J, Gieleciak R (2016) Molecular-level modeling and simulation of vacuum gas oil hydrocracking. Energy Fuels 30:138–148

    Article  CAS  Google Scholar 

  • Araújo BQ, Azevedo DA (2016) Uncommon steranes in Brazilian marginal crude oils: Dinoflagellate molecular fossils in the Sergipe-Alagoas Basin, Brazil. Org Geochem 99:38–52

    Article  CAS  Google Scholar 

  • Barrow MP, Headley JV, Peru KM, Derrick PJ (2004) Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids. J Chromatogr A 1058:51–59

    Article  CAS  PubMed  Google Scholar 

  • Bataglion GA, Meurer E, de Albergaria-Barbosa ACR, Bícego MC, Weber RR, Eberlin MN (2015) Determination of geochemically important sterols and triterpenols in sediments using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS). Anal Chem 87:7771–7778

    Article  CAS  PubMed  Google Scholar 

  • Bayona JM, Domínguez C, Albaigés J (2015) Analytical developments for oil spill fingerprinting. Trends Environ Anal Chem 5:26–34

    Article  CAS  Google Scholar 

  • Becker KW, Lipp JS, Zhu C, Liu X-L, Hinrichs K-U (2013) An improved method for the analysis of archaeal and bacterial ether core lipids. Org Geochem 61:34–44

    Article  CAS  Google Scholar 

  • Bertoncini F, Courtiade-Tholance M, Thiebaut D (2013) Gas chromatography and 2D-gas chromatography for petroleum industry. The race for selectivity. Editions Technip, Paris. 368 pp

    Google Scholar 

  • Bissada KK, Tan J, Szymczyk E, Darnell M, Mei M (2016) Group-type characterization of crude oil and bitumen. Part I: enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Org Geochem 95:21–28

    Article  CAS  Google Scholar 

  • Boduszynski MM (1988) Composition of heavy petroleums. 2. Molecular characterization. Energy Fuels 2:597–613

    Article  CAS  Google Scholar 

  • Borton D, Pinkston DS, Hurt MR, Tan X, Azyat K, Tykwinski R, Gray M, Qian K, Kenttämaa HI (2010) Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energy Fuels 24:5548–5559

    Article  CAS  Google Scholar 

  • Boysen RB, Schabron JF (2013) The automated asphaltene determinator coupled with saturates, aromatics, and resins separation for petroleum residua characterization. Energy Fuels 27:654–4661

    Article  CAS  Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15

    Article  CAS  Google Scholar 

  • Brocart B, Bourrel M, Hurtevent C, Volle J-L, Escoffier B (2007) ARN-type naphthenic acids in crudes: analytical detection and physical properties. J Dispers Sci Technol 28:331–337

    Article  CAS  Google Scholar 

  • Chen H, Hou A, Corilo YE, Lin Q, Lu J, Mendelssohn IA, Zhang R, Rodgers RP, McKenna AM (2016) 4 years after the Deepwater Horizon spill: molecular transformation of Macondo well oil in Louisiana salt marsh sediments revealed by FT-ICR mass spectrometry. Environ Sci Technol 50:9061–9069

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Witt M, Jin JM, Kim YH, Nho N-S, Kim S (2014) Evaluation of laser desorption ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry to study metalloporphyrin complexes. Energy Fuels 28:6699–6706

    Article  CAS  Google Scholar 

  • Cho Y, Ahmed A, Islam A, Kim S (2015) Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom Rev 34:248–263

    Article  CAS  PubMed  Google Scholar 

  • Corilo YE, Podgorski DC, McKenna AM, Lemkau KL, Reddy CM, Marshall AG, Rodgers RP (2013) Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 85:9064–9069

    Article  CAS  PubMed  Google Scholar 

  • Crawford KE, Campbell JL, Fiddler MN, Duan P, Qian K, Gorbaty ML, Kenttamaa HI (2005) Laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry for petroleum distillate analysis. Anal Chem 77:7916–7923

    Article  CAS  PubMed  Google Scholar 

  • da Cunha ALMC, Sá A, Mello SC, Vásquez-Castro YE, Luna AS, Aucelio RQ (2016) Determination of nitrogen-containing polycyclic aromatic compounds in diesel and gas oil by reverse-phase high performance liquid chromatography using introduction of sample as detergentless microemulsion. Fuel 176:119–129

    Article  CAS  Google Scholar 

  • da Silveira GD, Faccin H, Claussen L, Goularte RB, Nascimento PC, Bohrer D, Cravo M, Leite LFM, de Carvalho LM (2016) A liquid chromatography–atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements. J Chromatogr A 1457:29–40

    Article  PubMed  CAS  Google Scholar 

  • De la Rue W, Miller H (1856) Chemical examination of Burmese naphtha or Rangoon tar. Proc R Soc Lond 8:221–228

    Article  Google Scholar 

  • Dias HP, Pereira TMC, Vanini G, Dixini PV, Celante VG, Castro EVR, Vaz BG, Fleming FP, Gomes AO, Aquije GMFV, Romão W (2014) Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy. Fuel 126:85–95

    Article  CAS  Google Scholar 

  • Dijkmans T, Van Geem KM, Djokic MR, Marin GB (2014) Combined comprehensive two-dimensional gas chromatography analysis of polyaromatic hydrocarbons/polyaromatic sulfur-containing hydrocarbons (PAH/PASH) in complex matrices. Ind Eng Chem Res 53:15436–15446

    Article  CAS  Google Scholar 

  • Dijkmans T, Djokic MR, Van Geem KM, Marin GB (2015) Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC × GC – FID/SCD/NCD/TOF-MS. Fuel 140:398–406

    Article  CAS  Google Scholar 

  • Dutriez T, Borras J, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Hennion M-C (2011) Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:3190–3199

    Article  CAS  PubMed  Google Scholar 

  • Dutta Majumdar R, Bake KD, Ratna Y, Pomerantz AE, Mullins OC, Gerken M, Hazendonk P (2016) Single-core PAHs in petroleum- and coal-derived asphaltenes: size and distribution from solid-state NMR spectroscopy and optical absorption measurements. Energy Fuels 30:6892–6906

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ, Hodges R, Raphael RA (1959) Gas-liquid chromatography of natural products and their derivatives. Chem Ind (Lond) 1959: 955–957

    Google Scholar 

  • Eglinton G, Maxwell JR, Evershed RP, Barwise AJG (1985) Red pigments in petroleum exploration. Interdiscip Sci Rev 10:222–236

    Article  Google Scholar 

  • Eiserbeck C, Nelson RK, Grice K, Curiale J, Reddy CM, Raiteri P (2011) Separation of 18α(H)-, 18β(H)-oleanane and lupane by comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:5549–5553

    Article  CAS  PubMed  Google Scholar 

  • Eiserbeck C, Nelson RK, Reddy CM, Grice K (2015) Advances in comprehensive two-dimensional gas chromatography (GC × GC). In: Grice K (ed) Principles and practice of analytical techniques in geosciences. The Royal Society of Chemistry, Cambridge, pp 324–365

    Google Scholar 

  • Espinosa M, Pacheco US, Leyte F, Ocampo R (2014) Separation and identification of porphyrin biomarkers from a heavy crude oil Zaap-1 offshore well, Sonda de Campeche, México. J Porphyrins Phthalocyanines 18:542–551

    Article  CAS  Google Scholar 

  • Fang Z, He C, Li Y, Chung KH, Xu C, Shi Q (2016) Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS. Talanta 162:466–473

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Owen BC, Borton DJ, Jin Z, Kenttämaa HI (2012) HPLC/APCI mass spectrometry of saturated and unsaturated hydrocarbons by using hydrocarbon solvents as the APCI reagent and HPLC mobile phase. J Am Soc Mass Spectrom 23:816–822

    Article  CAS  PubMed  Google Scholar 

  • Gaspar A, Schrader W (2012) Expanding the data depth for the analysis of complex crude oil samples by Fourier transform ion cyclotron resonance mass spectrometry using the spectral stitching method. Rapid Commun Mass Spectrom 26:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Gaspar A, Zellermann E, Lababidi S, Reece J, Schrader W (2012) Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry. Anal Chem 84:5257–5267

    Article  CAS  PubMed  Google Scholar 

  • Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Cooper WJ (2009) Photochemically induced changes in dissolved organic matter identified by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43:698–703

    Article  CAS  PubMed  Google Scholar 

  • Grizzle PL, Sablotny DM (1986) Automated liquid-chromatographic compound class group-type separation of crude oils and bitumens using chemically bonded aminosilane. Anal Chem 58:2389–2396

    Article  CAS  Google Scholar 

  • Grob RL, Barry EF (2004) Modern practice of gas chromatography, 4th edn. Wiley, Hoboken. 1064 pp

    Book  Google Scholar 

  • Guigue J, Harir M, Mathieu O, Lucio M, Ranjard L, Lévêque J, Schmitt-Kopplin P (2016) Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils. Biogeochemistry 128:307–326

    Article  Google Scholar 

  • Han X, MacKinnon MD, Martin JW (2009) Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76:63–70

    Article  CAS  PubMed  Google Scholar 

  • Hayes PC, Anderson SD (1988) Paraffins, olefins, naphthenes and aromatics analysis of selected hydrocarbon distillates using on-line column switching high-performance liquid chromatography with dielectric constant detection. J Chromatogr A 437:365–377

    Article  CAS  Google Scholar 

  • Headley JV, Peru KM, Barrow MP (2016) Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil – a review. Mass Spectrom Rev 35:311–328

    Article  CAS  PubMed  Google Scholar 

  • Hegazi AH, Fathalla EM, Panda SK, Schrader W, Andersson JT (2012) High-molecular weight sulfur-containing aromatics refractory to weathering as determined by Fourier transform ion cyclotron resonance mass spectrometry. Chemosphere 89:205–212

    Article  CAS  PubMed  Google Scholar 

  • Higgins MB, Robinson RS, Casciotti KL, McIlvin MR, Pearson A (2009) A method for determining the nitrogen isotopic composition of porphyrins. Anal Chem 81:184–192

    Article  CAS  PubMed  Google Scholar 

  • Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Singhe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589

    Article  CAS  PubMed  Google Scholar 

  • Hsu CS (2012) Mass resolving power for molecular formula determination. Energy Fuels 26:1169–1177

    Article  CAS  Google Scholar 

  • Hsu CS, Drinkwater D (2001) Chapter 3. GC/MS in the petroleum industry. In: Niessen WMA (ed) Current practice in gas chromatography-mass spectrometry. Dekker Marcel, New-York, pp 55–94

    Google Scholar 

  • Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG (2011) Petroleomics: advanced molecular probe for petroleum heavy ends. J Mass Spectrom 46:337–343

    Article  CAS  PubMed  Google Scholar 

  • Huang R, McPhedran KN, Gamal El-Din M (2015) Ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry characterization of naphthenic acids species from oil sands process-affected water. Environ Sci Technol 49:11737–11745

    Article  CAS  PubMed  Google Scholar 

  • Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG (2001) Kendrick mass defect spectrum: a compact visual analysis for ultra-high resolution broadband mass spectra. Anal Chem 73:4676–4681

    Article  CAS  PubMed  Google Scholar 

  • Hughey CA, Rodgers RP, Marshall AG (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal Chem 36:4145–4149

    Article  CAS  Google Scholar 

  • Hughey CA, Rodgers RP, Marshall AG, Walters CC, Qian K, Mankiewicz P (2004) Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 35:863–880

    Article  CAS  Google Scholar 

  • Hughey CA, Galasso SA, Zumberge JE (2007) Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel 86:758–768

    Article  CAS  Google Scholar 

  • Hur M, Yeo I, Kim E, No M-h, Koh J, Cho YJ, Lee JW, Kim S (2010a) Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils. Energy Fuels 24:5524–5532

    Article  CAS  Google Scholar 

  • Hur M, Yeo I, Park E, Kim YH, Yoo J, Kim E, No M-h, Koh J, Kim S (2010b) Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples. Anal Chem 82:211–218

    Article  CAS  PubMed  Google Scholar 

  • Ikeya K, Sleighter RL, Hatcher PG, Watanabe A (2015) Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta 153:169–182

    Article  CAS  Google Scholar 

  • Islam A, Cho Y, Yim UH, Shim WJ, Kim YH, Kim S (2013) The comparison of weathered oil spills at two stages and photo-degraded oil at one stage at the molecular level by a combination of SARA fractionation and FT-ICR MS. J Hazard Mater 263(Part 2):404–411

    Article  CAS  PubMed  Google Scholar 

  • Jaffe SB, Freund H, Olmstead WN (2005) Extension of structure-oriented lumping to vacuum residua. Ind Eng Chem Res 44:9840–9852

    Article  CAS  Google Scholar 

  • Johnson AL, Freeman DH (1990) Systematic preparative methods for petroporphyrin purification. Energy Fuels 4:695–699

    Article  CAS  Google Scholar 

  • Junium CK, Freeman KH, Arthur MA (2015) Controls on the stratigraphic distribution and nitrogen isotopic composition of zinc, vanadyl and free base porphyrins through Oceanic Anoxic Event 2 at Demerara Rise. Org Geochem 80:60–71

    Article  CAS  Google Scholar 

  • Juyal P, Yen AT, Rodgers RP, Allenson S, Wang J, Creek J (2010) Compositional variations between precipitated and organic solid deposition control (OSDC) asphaltenes and the effect of inhibitors on deposition by electrospray ionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy Fuels 24:2320–2326

    Article  CAS  Google Scholar 

  • Karimi A, Qian K, Olmstead WN, Freund H, Yung C, Gray MR (2011) Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy Fuels 25:3581–3589

    Article  CAS  Google Scholar 

  • Kashiyama Y, Kitazato H, Ohkouchi N (2007) An improved method for isolation and purification of sedimentary porphyrins by high-performance liquid chromatography for compound-specific isotopic analysis. J Chromatogr A 1138:73–83

    Article  CAS  PubMed  Google Scholar 

  • Kekäläinen T, Pakarinen JMH, Wickström K, Vainiotalo P (2009) Compositional study of polar species in untreated and hydrotreated gas oil samples by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTIC-MS). Energy Fuels 23:6055–6061

    Article  CAS  Google Scholar 

  • Khorassani MA, Taylor LT (1989) Application of sub- and supercritical fluid chromatography to vanadium and nickel porphyrins. J Chromatogr Sci 27:329–333

    Article  Google Scholar 

  • Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian K, Wenger LM, Mankiewicz P (2005) Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 36:1117–1134

    Article  CAS  Google Scholar 

  • Kim S, Kaplan LA, Hatcher PG (2006a) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnol Oceanogr 51:1054–1063

    Article  CAS  Google Scholar 

  • Kim S, Rodgers RP, Marshall AG (2006b) Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at ~0.1 mDa accuracy for molecules up to ~500 Da. Int J Mass Spectrom 251:260–265

    Article  CAS  Google Scholar 

  • Klein GC, Angström A, Rodgers RP, Marshall AG (2006) Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 20:668–672

    Article  CAS  Google Scholar 

  • Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN (2012) Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry. Energy Fuels 26:5787–5794

    Article  CAS  Google Scholar 

  • Koch BP, Witt M, Engbrodt R, Dittmar T, Kattner G (2005) Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta 69:3299–3308

    Article  CAS  Google Scholar 

  • Kujawinski EB, Hatcher PG, Freitas MA (2002) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. Anal Chem 74:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37

    Article  CAS  Google Scholar 

  • Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh-resolution mass spectrometry. Geochim Cosmochim Acta 73:4384–4399

    Article  CAS  Google Scholar 

  • Lengger SK, Scarlett AG, West CE, Rowland SJ (2013) Diamondoid diacids (‘O4’ species) in oil sands process-affected water. Rapid Commun Mass Spectrom 27:2648–2654

    Article  CAS  PubMed  Google Scholar 

  • Levy JM (1994) Fossil fuel applications of SFC and SFE: a review. J High Resolut Chromatogr 17:212–216

    Article  CAS  Google Scholar 

  • Li S, Shi Q, Pang X, Zhang B, Zhang H (2012) Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration. Org Geochem 48:56–80

    Article  CAS  Google Scholar 

  • Li Y, Xu C, Chung KH, Shi Q (2015) Molecular characterization of dissolved organic matter and its subfractions in refinery process water by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 29:2923–2930

    Article  CAS  Google Scholar 

  • Liao Y, Shi Q, Hsu CS, Pan Y, Zhang Y (2012) Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS. Org Geochem 47:51–65

    Article  CAS  Google Scholar 

  • Liu P, Li M, Jiang Q, Cao T, Sun Y (2015) Effect of secondary oil migration distance on composition of acidic NSO compounds in crude oils determined by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 78:23–31

    Article  CAS  Google Scholar 

  • Liu X-L, Summons RE, Higgins MB, Walters CC (2017) Esterified glycerol dialkyl glycerol tetraethers derived from low temperature thermal diagensis of microial lipids. In: 28th international meeting on organic geochemistry, p 98

    Google Scholar 

  • Llewelyn JM, Landing WM, Marshall AG, Cooper WT (2002) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic phosphorus species in a treatment wetland after selective isolation and concentration. Anal Chem 74:600–606

    Article  CAS  PubMed  Google Scholar 

  • Lung S-CC, Liu C-H (2015) Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. Sci Rep 5:12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magi E, Ianni C, Rivaro P, Frache R (2001) Determination of porphyrins and metalloporphyrins using liquid chromatography-diode array deterction and mass spectrometry. J Chromatogr A 905:141–149

    Article  CAS  PubMed  Google Scholar 

  • Mapolelo MM, Stanford LA, Rodgers RP, Yen AT, Debord JD, Asomaning S, Marshall AG (2009) Chemical speciation of calcium and sodium naphthenate deposits by electrospray ionization FT-ICR mass spectrometry. Energy Fuels 23:349–355

    Article  CAS  Google Scholar 

  • Marriott PJ, Chin S-T, Maikhunthod B, Schmarr H-G, Bieri S (2012) Multidimensional gas chromatography. TrAC Trends Anal Chem 34:1–21

    Article  CAS  Google Scholar 

  • Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci 105:18090–18095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  • Mawson DH, Walker JS, Keely BJ (2004) Variations in the distributions of sedimentary alkyl porphyrins in the Mulhouse basin in response to changing environmental conditions. Org Geochem 35:1229–1241

    Article  CAS  Google Scholar 

  • McDonald GR (2011) Georgius Agricola and the invention of petroleum. Bibl Hum Renaiss 73:351–364

    Google Scholar 

  • McKee GA, Hatcher PG (2015) A new approach for molecular characterization of sediments with Fourier transform ion cyclotron resonance mass spectrometry: extraction optimisation. Org Geochem 85:22–31

    Article  CAS  Google Scholar 

  • McKenna AM, Purcell JM, Rodgers RP, Marshall AG (2009) Identification of vanadyl porphyrins in a heavy crude oil and raw asphaltene by atmospheric pressure photoionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy Fuels 23:2122–2128

    Article  CAS  Google Scholar 

  • McKenna AM, Nelson RK, Reddy CM, Savory JJ, Kaiser NK, Fitzsimmons JE, Marshall AG, Rodgers RP (2013) Expansion of the analytical window for oil spill characterization by ultrahigh-resolution mass spectrometry: beyond gas chromatography. Environ Sci Technol 47:7530–7539

    Article  CAS  PubMed  Google Scholar 

  • McKenna AM, Williams JT, Putman JC, Aeppli C, Reddy CM, Valentine DL, Lemkau KL, Kellermann MY, Savory JJ, Kaiser NK, Marshall AG, Rodgers RP (2014) Unprecedented ultrahigh-resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl porphyrins in petroleum from natural seeps. Energy Fuels 28:2454–2464

    Article  CAS  Google Scholar 

  • Mennito AS, Qian K (2013) Characterization of heavy petroleum saturates by laser desorption silver cationization and Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 27:7348–7353

    Article  CAS  Google Scholar 

  • Meredith W, Kelland S-J, Jones DM (2000) Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org Geochem 31:1059–1073

    Article  CAS  Google Scholar 

  • Mogollón NGS, Prata PS, dos Reis JZ, Neto EVdS, Augusto F (2016) Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry. J Sep Sci 39:3384–3391

    Article  PubMed  CAS  Google Scholar 

  • Mullins OC (2010) The modified Yen model. Energy Fuels 24:2179–2207

    Article  CAS  Google Scholar 

  • Mullins OC, Sheu EY, Hammami A, Marshall AG (2006) Asphaltenes, heavy oils, and petroleomics. Springer-Verlag New York, 670 pp

    Google Scholar 

  • Nelson RK, Aeppli C, Samuel J, Chen H, de Oliveira AHB, Eiserbeck C, Frysinger GS, Gaines RB, Grice K, Gros J, Hall GJ, Koolen HHF, Lemkau KL, McKenna AM, Reddy CM, Rodgers RP, Swarthout RF, Valentine DL, White HK (2016) Applications of comprehensive two-dimensional gas chromatography (GC × GC) in studying the source, transport, and fate of petroleum hydrocarbons in the environment. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic, Boston, pp 399–448

    Chapter  Google Scholar 

  • Nizio KD, McGinitie TM, Harynuk JJ (2012) Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 1255:12–23

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg TBP, Brown M, Bennett B, Larter SR (2014) The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Org Geochem 75:151–168

    Article  CAS  Google Scholar 

  • Oro NE, Lucy CA (2013) Analysis of the nitrogen content of distillate cut gas oils and treated heavy gas oils using normal phase HPLC, fraction collection and petroleomic FT-ICR MS data. Energy Fuels 27:35–45

    Article  CAS  Google Scholar 

  • Oro NE, Whittal RM, Lucy CA (2012) Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta 741:70–77

    Article  CAS  PubMed  Google Scholar 

  • Orrego-Ruiz JA, Gomez-Escudero A, Rojas-Ruiz FA (2016) Combination of negative electrospray ionization and positive atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry as a quantitative approach of acid species in crude oils. Energy Fuels 30:8209–8215

    Article  CAS  Google Scholar 

  • Pearson CD, Gharfeh SG (1986) Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residues using a flame ionization detector. Anal Chem 58:307–311

    Article  CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vol 1 & 2, 2nd edn. Cambridge University Press, New York. 1155 pp

    Google Scholar 

  • Petkewich R (2003) “Cracking” the structure of petroleum. Sophisticated mass spectrometry method may fingerprint crude oil. Environ Sci Technol 37:206A–207A

    Article  CAS  PubMed  Google Scholar 

  • Pinkston DS, Duan P, Gallardo VA, Habicht SC, Tan X, Qian K, Gray M, Müllen K, Kenttämaa HI (2009) Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 23:5564–5570

    Article  CAS  Google Scholar 

  • Pitcher A, Hopmans EC, Schouten S, Sinninghe Damsté JS (2009) Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions. Org Geochem 40:12–19

    Article  CAS  Google Scholar 

  • Podgorski DC, Corilo YE, Nyadong L, Lobodin VV, Bythell BJ, Robbins WK, McKenna AM, Marshall AG, Rodgers RP (2013) Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuels 27:1268–1276

    Article  CAS  Google Scholar 

  • Pomerantz AE, Ventura GT, McKenna AM, Cañas JA, Auman J, Koerner K, Curry D, Nelson RK, Reddy CM, Rodgers RP, Marshall AG, Peters KE, Mullins OC (2010) Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. Org Geochem 41:812–821

    Article  CAS  Google Scholar 

  • Pomerantz AE, Mullins OC, Paul G, Ruzicka J, Sanders M (2011) Orbitrap mass spectrometry: a proposal for routine analysis of non-volatile components of petroleum. Energy Fuels 25:3077–3082

    Article  CAS  Google Scholar 

  • Poole CF (ed) (2017) Supercritical fluid chromatograph. Elsevier, Amsterdam. 560 pp

    Google Scholar 

  • Pudenzi MA, Eberlin MN (2016) Assessing relative electrospray ionization, atmospheric pressure photoionization, atmospheric pressure chemical ionization, and atmospheric pressure photo- and chemical ionization efficiencies in mass spectrometry petroleomic analysis via pools and pairs of selected polar compound standards. Energy Fuels 30:7125–7133

    Article  CAS  Google Scholar 

  • Qian K, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG (2001a) Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15:1505–1511

    Article  CAS  Google Scholar 

  • Qian K, Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG (2001b) Reading chemical fine print: resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels 15:492–498

    Article  CAS  Google Scholar 

  • Qian K, Mennito AS, Edwards KE, Ferrughelli DT (2008a) Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 22:2153–2160

    Article  CAS  PubMed  Google Scholar 

  • Qian K, Edwards KE, Dechert GJ, Jaffe SB, Green LA, Olmstead WN (2008b) Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry. Anal Chem 80:849–855

    Article  CAS  PubMed  Google Scholar 

  • Qian K, Edwards KE, Mennito AS, Walters CC, Kushnerick JD (2010) Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 82:413–419

    Article  CAS  PubMed  Google Scholar 

  • Qian K, Edwards KE, Mennito AS, Freund H, Saeger RB, Hickey KJ, Francisco MA, Yung C, Chawla B, Wu C, Kushnerick JD, Olmstead WN (2012) Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84:4544–4551

    Article  CAS  PubMed  Google Scholar 

  • Qian K, Edwards K, Mennito A, Saeger RB (2016) Generation of model of composition of petroleum by high resolution mass spectrometry and associated analytics. US Patent 9490109

    Google Scholar 

  • Rabkin YM, Lafitte-Houssat JJ (1979) Cooperative research in petroleum chemistry. Scientometrics 1:327–338

    Article  Google Scholar 

  • Robbins WK (1998) Quantitative measurement of mass and aromaticity distributions for heavy distillates 1. Capabilities of the HPLC-2 system. J Chromatogr Sci 36:457–466

    Article  CAS  Google Scholar 

  • Rodgers RP, Marshall AG (2007) Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Mullins OC, Sheu EY, Hammami A, Marshall AG (eds) Asphaltenes, heavy oils, and petroleomics. Springer, New York, pp 63–93

    Chapter  Google Scholar 

  • Romão W, Tose LV, Vaz BG, Sama SG, Lobinski R, Giusti P, Carrier H, Bouyssiere B (2016) Petroleomics by direct analysis in real time-mass spectrometry. J Am Soc Mass Spectrom 27:182–185

    Article  PubMed  CAS  Google Scholar 

  • Rosell-Melé A, Carter JF, Maxwell JR (1996) High-performance liquid chromatography–mass spectrometry of porphyrins by using an atmospheric pressure interface. J Am Soc Mass Spectrom 7:965–971

    Article  PubMed  Google Scholar 

  • Rossini FD, Mair BJ (1951) Composition of petroleum. In: Progress in petroleum technology, vol 5. American Chemical Society, Washington, DC, pp 334–352

    Chapter  Google Scholar 

  • Rossini FD, Mair BJ (1959) The work of the API research project 6 on the composition of petroleum. In: Proceedings of 5th world petroleum congress, pp 223–245

    Google Scholar 

  • Ruiz-Guerrero R, Vendeuvre C, Thiébaut D, Bertoncini F, Espinat D (2006) Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates. J Chromatogr Sci 44:566–573

    Article  CAS  PubMed  Google Scholar 

  • Rummel JL, McKenna AM, Marshall AG, Eyler JR, Powel DH (2010) The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. Rapid Commun Mass Spectrom 24:784–790

    Article  CAS  PubMed  Google Scholar 

  • Savory JJ, Kaiser NK, McKenna AM, Xian F, Blakney GT, Rodgers RP, Hendrickson CL, Marshall AG (2011) Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Anal Chem 83:1732–1736

    Article  CAS  PubMed  Google Scholar 

  • Schabron JF, Rovani JF, Sanderson MM (2010) Asphaltene determinator method for automated on-column precipitation and redissolution of pericondensed aromatic asphaltene components. Energy Fuels 24:5984–5996

    Article  CAS  Google Scholar 

  • Schaub TM, Rodgers RP, Marshall AG, Qian K, Green LA, Olmstead WN (2005) Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry. Energy Fuels 19:1566–1573

    Article  CAS  Google Scholar 

  • Schmidt F, Koch BP, Witt M, Hinrichs K-U (2014) Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction. Geochim Cosmochim Acta 141:83–96

    Article  CAS  Google Scholar 

  • Schuler B, Meyer G, Peña D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc 137:9870–9876

    Article  CAS  PubMed  Google Scholar 

  • Seeley JV, Seeley SK (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85:557–578

    Article  CAS  PubMed  Google Scholar 

  • Seidel M, Beck M, Riedel T, Waska H, Suryaputra IGNA, Schnetger B, Niggemann J, Simon M, Dittmar T (2014) Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta 140:418–434

    Article  CAS  Google Scholar 

  • Seidel M, Kleindienst S, Dittmar T, Joye SB, Medeiros PM (2016) Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: insights from ultra-high resolution mass spectrometry. Deep Sea Res Part II Top Stud Oceanogr 129:108–118

    Article  CAS  Google Scholar 

  • Silva RC, Radović JR, Ahmed F, Ehrmann U, Brown M, Carbognani Ortega L, Larter S, Pereira-Almao P, Oldenburg TBP (2016) Characterization of acid-soluble oxidized asphaltenes by Fourier transform ion cyclotron resonance mass spectrometry: insights on oxycracking processes and asphaltene structural features. Energy Fuels 30:171–179

    Article  CAS  Google Scholar 

  • Sim A, Cho Y, Kim D, Witt M, Birdwell JE, Kim BJ, Kim S (2014) Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry. Fuel 140:717–723

    Article  CAS  Google Scholar 

  • Simon S, Nordgård E, Bruheim P, Sjöblom J (2008) Determination of C80 tetra-acid content in calcium naphthenate deposits. J Chromatogr A 1200:136–143

    Article  CAS  PubMed  Google Scholar 

  • Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110:140–152

    Article  CAS  Google Scholar 

  • Smith BE, Rowland SJ (2008) A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids. Rapid Commun Mass Spectrom 22:3909–3927

    Article  CAS  PubMed  Google Scholar 

  • Sundararaman P (1985) High-performance liquid chromatography of vanadyl porphyrins. Anal Chem 57:2204–2206

    Article  CAS  Google Scholar 

  • Sutton PA, Rowland SJ (2012) High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds. J Chromatogr A 1243:68–90

    Article  CAS  Google Scholar 

  • Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:880–892

    Article  CAS  PubMed  Google Scholar 

  • Taylor LT (2010) Supercritical fluid chromatography. Anal Chem 82:4925–4935

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut DRP, Robert EC (1999) Group-type separation and simulated distillation: a niche for SFC. Analusis 27:681–690

    Article  CAS  Google Scholar 

  • Treibs A (1936) Chlorophyll and hemin derivatives in organic mineral substances. Angew Chem 49:682–686

    Article  CAS  Google Scholar 

  • Vaughan PP, Wilson T, Kamerman R, Hagy ME, McKenna A, Chen H, Jeffrey WH (2016) Photochemical changes in water accommodated fractions of MC252 and surrogate oil created during solar exposure as determined by FT-ICR MS. Mar Pollut Bull 104:262–268

    Article  CAS  PubMed  Google Scholar 

  • Vaz BG, Silva RC, Klitzke CF, Simas RC, Lopes Nascimento HD, Pereira RCL, Garcia DF, Eberlin MN, Azevedo DA (2013) Assessing biodegradation in the Llanos Orientales crude oils by electrospray ionization ultrahigh-resolution and accuracy Fourier transform mass spectrometry and chemometric analysis. Energy Fuels 27:1277–1284

    Article  CAS  Google Scholar 

  • Walters CC (2016) The origin of petroleum. In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, Cham

    Google Scholar 

  • Walters CC, Freund H, Kelemen SR, Braun AL, Wenger LM (2009) Predicting oil quality – simulating reservoir alteration processes. In: 2009 Napa AAPG Hedberg research conference on basin and petroleum systems modeling

    Google Scholar 

  • Walters CC, Qian K, Wu C, Mennito AS, Wei Z (2011) Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction. Org Geochem 42:999–1006

    Article  CAS  Google Scholar 

  • Walters CC, Wang FC, Qian K, Wu C, Mennito AS, Wei Z (2015) Petroleum alteration by thermochemical sulfate reduction – a comprehensive molecular study of aromatic hydrocarbons and polar compounds. Geochim Cosmochim Acta 153:37–71

    Article  CAS  Google Scholar 

  • Wang FC (2017) Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel. J Chromatogr A 1489:126–133

    Article  CAS  PubMed  Google Scholar 

  • Wang FC, Robbins WK, Sanzo FP, McElroy FC (2003) Speciation of sulfur-containing compounds in diesel by comprehensive two-dimensional gas chromatography. J Chromatogr Sci 41:519–523

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wan Y, Gao Y, Yang M, Hu J (2013) Determination and characterization of oxy-naphthenic acids in oilfield wastewater. Environ Sci Technol 47:9545–9554

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu Y, Liu Z, Tian S (2016) Detailed chemical composition of straight-run vacuum gas oil and its distillates as a function of the atmospheric equivalent boiling point. Energy Fuels 30:968–974

    CAS  Google Scholar 

  • Wang FC, Qian K, Edwards KF (2018) Integrated hydrocarbon analysis. US Patent 9417220

    Google Scholar 

  • Woltering M, Tulipani S, Boreham CJ, Walshe J, Schwark L, Grice K (2016) Simultaneous quantitative analysis of Ni, VO, Cu, Zn and Mn geoporphyrins by liquid chromatography – high resolution multistage mass spectrometry: method development and validation. Chem Geol 441:81–91

    Article  CAS  Google Scholar 

  • Wu C, Qian K, Nefliu M, Cooks RG (2010) Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21:261–267

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Walters CC, Qian K (2015) Analysis of hydrocarbon liquid and solid samples. US Patent 9053296 B2

    Google Scholar 

  • Xian F, Hendrickson CL, Marshall AG (2012) High resolution mass spectrometry. Anal Chem 84:708–719

    Article  CAS  PubMed  Google Scholar 

  • Yue S, Ramsay BA, Wang J, Ramsay JA (2016) Biodegradation and detoxification of naphthenic acids in oil sands process affected waters. Sci Total Environ 572:273–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu C, Shi Q, Zhao S, Chung KH, Hou D (2010) Tracking neutral nitrogen compounds in subfractions of crude oil obtained by liquid chromatography separation using negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 24:6321–6326

    Article  CAS  Google Scholar 

  • Zhu R, Shen B, Liu J, Chen X (2012) A kinetic model for catalytic cracking of vacuum gas oil using a structure-oriented lumping method. Energy Sources A 34:2066–2072

    Article  CAS  Google Scholar 

  • Zhu C, Lipp JS, Wörmer L, Becker KW, Schröder J, Hinrichs K-U (2013) Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol. Org Geochem 65:53–62

    Article  CAS  Google Scholar 

  • Zhurov KO, Kozhinov AN, Tsybin YO (2013) Evaluation of high-field Orbitrap Fourier transform mass spectrometer for petroleomics. Energy Fuels 27:2974–2983

    Article  CAS  Google Scholar 

  • Zubarev RA, Makarov A (2013) Orbitrap mass spectromery. Anal Chem 85:5288–5296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford C. Walters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Walters, C.C., Higgins, M.B. (2018). Petroleomics. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics