Skip to main content

Reduced Order Model of a Human Left and Right Ventricle Based on POD Method

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

The paper aims to build a reduced order model (ROM) of the left and right ventricle of a human heart. The input heart model is build from 3D sets of registered, flexible surface meshes for the left and right ventricle, resulting from the MRI data. Spatial and temporal variables are separated using Proper Orthogonal Decomposition. It enables data reduction and works as a data-driven filter, separating similar and alternative properties of the left and right ventricle movement, which is diagnostically essential in cardiology studies. Each mode can be correlated with a corresponding heart movement. The temporal coefficients reflect the functioning of the heart, and comparing them may reveal and distinguish pathologies. We have proven that complex heart motion can be modeled with relatively small number of degrees of freedom. The model spanned on a few POD modes allows the analysis of the crucial movement data and better identification of possible failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baguet JP, Barone-Rochette G, Tamisier R, Levy P, Pépin JL (2012) Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 9(12):679–688

    Article  Google Scholar 

  2. Bouvy ML, Heerdink ER, Leufkens HGM, Hoes AW (2003) Predicting mortality in patients with heart failure: a pragmatic approach. Heart 89(6):605–609

    Article  Google Scholar 

  3. Bassingthwaighte J, Hunter P, Noble D (2009) The cardiac Physiome: perspectives for the future. Exp Physiol 94(5):597–605

    Article  Google Scholar 

  4. Rychlik M, Józwiak M, Idzior M, Chen PJ, Szulc A, Woźniak W (2010) Acetabular direction and capacity of hip joint dysplasia in cerebral palsy–counterpoint option of morphology understanding. In 6th World Congress of Biomechanics (pp. 1546–1549), Springer

    Google Scholar 

  5. Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11(5):429–442

    Article  Google Scholar 

  6. Glass L, Hunter P, McCulloch A (eds) (2012) Theory of heart: biomechanics, biophysics, and nonlinear dynamics of cardiac function. Springer, New York

    Google Scholar 

  7. Toussaint N, Mansi T, Delingette H, Ayache N, Sermesant M (2008) An integrated platform for dynamic cardiac simulation and image processing: application to personalised tetralogy of fallot simulation. In: Eurographics Workshop on Visual Computing and Biomedicine. (pp.21–28).

    Google Scholar 

  8. Vazquez M, Arís R, Houzeaux G, Aubry R et al (2011) A massively parallel computational electrophysiology model of the heart. Int J Num Meth Biomed Eng 27(12):1911–1929

    Article  MATH  Google Scholar 

  9. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  10. O’Dell W, McVeigh ER (1998) A modal description of LV motion during ejection, In: Proceedings of the International Society for Magnetic Resonance in Medicine

    Google Scholar 

  11. Hoppe RHW (2002) Model reduction by proper orthogonal decomposition, NSF-I/UCRC 288 grant, University of Houston

    Google Scholar 

  12. Antoulas AC (2005) Approximation of large scale dynamical systems. Advances in design and control, vol 6. SIAM, Philadelphia

    Google Scholar 

  13. Rychlik M, Stankiewicz W, Morzyński M (2008) Application of modal analysis for extraction of geometrical features of biological objects set. Biodevices 2008(2):227–232

    MATH  Google Scholar 

  14. Fischer SL, Hampton RH, Albert WJ (2014) A simple approach to guide factor retention decisions when applying principal component analysis to biomechanical data. Comput Methods Biomech Biomed Engin 17(3):199–203

    Article  Google Scholar 

  15. Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA (2009) Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J 49. http://hdl.handle.net/10380/3070

  16. Turk G, O’Brien JF (1999) Variational implicit surfaces. Tech. Rep. Georgia Institute of Technology, Georgia

    Google Scholar 

  17. Vercauteren T, Pennec X, Perchant A, Ayache N (2007) Non-parametric diffeomorphic image registration with the demons algorithm. In International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI (pp. 319–326).

    Google Scholar 

  18. Toussaint N, Sermesant M, Fillard P (2007) vtkinria3d: A VTK extension for spatiotemporal data synchronization, visualization and management. In: Proceedings of Workshop on Open Source and Open Data for MICCAI.

    Google Scholar 

  19. Daffertshofer A, Lamoth CJ, Meijer OG, Beek PJ (2004) PCA in studying coordination and variability: a tutorial. Clin Biomech 19(4):415–428

    Article  Google Scholar 

  20. Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation, pp 166–178

    Google Scholar 

  21. Chandrashekara R et al (2003) Construction of a statistical model for cardiac motion analysis using nonrigid image registration. Inf Process Med Imaging 18:599–610

    Article  Google Scholar 

  22. Zhang X, Cowan BR, Bluemke DA, Finn JP, Fonseca CG et al (2014) Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 9(10):e110243

    Article  Google Scholar 

  23. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Parts I–III. Q Appl Math 45(3):561–590

    Article  MathSciNet  MATH  Google Scholar 

  24. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

  25. Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recogn 40(3):863–874

    Article  MATH  Google Scholar 

  26. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Article  Google Scholar 

  27. Stone JV (2005) A brief introduction to independent component analysis. In: Everitt BS, Howell DC (eds) Encyclopedia of statistics in behavioral science. Wiley, Chichester

    Google Scholar 

  28. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data - with application to face recognition. Pattern Recogn 34(10):2067–2070

    Article  MATH  Google Scholar 

  29. Perperids D, Mohiaddin R, Edwards P, Rueckert D (2007) Segmentation of cardiac MR and CT image sequences using model-based registration of a 4D statistical model. In: Medical Imaging (p 65121D). International Society for Optics and Photonics

    Google Scholar 

  30. Stankiewicz W, Roszak R, Morzyński M (2011) Genetic algorithm-based calibration of reduced order Galerkin models. Math Model Anal 16(2):233–247

    Article  MATH  Google Scholar 

  31. Alfakih K, Plein S, Thiele H, Jones T et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3):323–329

    Article  Google Scholar 

  32. Ghorbanian P, Ghaffari A, Jalali A, Nataraj C (2010) Heart arrhythmia detection using continuous wavelet transform and principal component analysis with neural network classifier. Comput Cardiol 37:669–672

    Google Scholar 

  33. Boulakia M et al (2012) Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. Int J Numer Meth Biomed Engng 28:727–744

    Article  MathSciNet  Google Scholar 

  34. Martis RJ et al (2012) Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 39(14):11792–11800

    Article  Google Scholar 

  35. Wu J, Wang Y, Simon MA, Brigham JC (2012) A new approach to kinematic feature extraction from the human right ventricle for classification of hypertension: a feasibility study. Phys Med Biol 57(23):7905–7922

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Centre for Research and Development under the grant PBS3/B9/34/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Stankiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Przybyła, P. et al. (2017). Reduced Order Model of a Human Left and Right Ventricle Based on POD Method. In: Wittek, A., Joldes, G., Nielsen, P., Doyle, B., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-54481-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54481-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54480-9

  • Online ISBN: 978-3-319-54481-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics