Skip to main content

Experimental Identification of Lu-Gre Friction Model in an Hydraulic Actuator

  • Conference paper
  • First Online:
Advances in Automation and Robotics Research in Latin America

Abstract

In this work is presented the experimental identification of friction effects defined by the parameters of the LuGre model. The parameters are found by means of two experiments. The first one is performed with motions at constant velocity and the second one is performed under controlled force. These experiments allow to find separately the set of parameters that govern the steady state and the pre-sliding regime, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Syst. Mag. 28(6), 64–81 (2008)

    Article  MathSciNet  Google Scholar 

  2. Altpeter, F.: Friction modeling, identification and compensation. Ph. D, École Polytechnique Fédérale de Lausanne (1999)

    Google Scholar 

  3. Armstrong, B., Chen, Q.: The Z-properties chart. IEEE Control Syst. Mag. 28(5), 79–89 (2008)

    Article  MathSciNet  Google Scholar 

  4. Armstrong-Hélouvry, B., Dupont, P., Canudas-de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    Article  MATH  Google Scholar 

  5. Johanastrom, K., Canudas-de Wit, C.: Revisiting the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)

    Article  MathSciNet  Google Scholar 

  6. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389 (2005)

    Article  Google Scholar 

  7. Barahanov, N., Ortega, R.: Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Trans. Autom. Control 45(4), 830–832 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bombled, Q., Verlinden, O.: Dynamic simulation of six-legged robots with a focus on joint friction. Multibody Syst. Dyn. 28, 395–417 (2012)

    Article  Google Scholar 

  9. Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canudas-de Wit, C., Rubio, F.R., Corchero, M.A.: D-OSKIL: a new mechanism for controlling stick-slip oscillations in oil well drillstrings. IEEE Trans. Control Syst. Technol. 16(6), 1177–1191 (2008)

    Article  Google Scholar 

  11. Harnoy, A., Friedland, B., Cohn, S.: Modeling and measuring friction effects. IEEE Control Syst. Mag. 28(6), 82–91 (2008)

    Article  MathSciNet  Google Scholar 

  12. Lischinsky, P., Canudas-de Wit, C., Morel, G.: Friction compensation for an industrial hydraulic robot. IEEE Control Syst. Mag. 19(1), 25–32 (1999)

    Article  Google Scholar 

  13. Olsson, H., Astrom, K.J.: Friction generated limit cycles. IEEE Trans. Control Syst. Technol. 9(4), 629–636 (2001)

    Article  Google Scholar 

  14. Olsson, H.: Control Systems with friction. Ph. D thesis, Lund Institute of Technology, June 1996

    Google Scholar 

  15. Olsson, H., Astrom, K.J., Canudas-de Wit, C., Gafvert, M., Lischinsky, P.: Friction models and friction compensantion. Eur. J. Control 4(3), 176–195 (1998)

    Article  MATH  Google Scholar 

  16. Owen, W.S., Croft, E.A.: The reduction of stick-slip friction in hydraulic actuators. IEEE/ASME Trans. Mechatron. 8(3), 362–371 (2003)

    Article  Google Scholar 

  17. Padthe, A., Drincic, B., Rizos, D., Fassois, S., Bernstein, D.: Duhem modeling of friction-induced hysteresis. IEEE Control Syst. Mag. 28(5), 90–107 (2008)

    Article  MathSciNet  Google Scholar 

  18. Puglisi, Lisandro J., Saltaren, Roque J., Garcia, C.: On the velocity and accelertation estimation from discrete time-position sensors. Control Eng. Appl. Inf. 17, 30–40 (2015)

    Google Scholar 

  19. Puglisi, L.J., Saltaren, R.J., Garcia, C., Banfield, I.A.: Robustness analysis of a PI controller for a hydraulic actuator. Control Eng. Pract. 43, 94–108 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of Spanish Government CICYT Project Ref. DPI2014-57220-C2-1-P, DPI2013-49527-EXP Universidad Politcnica de Madrid Project Ref. AL14-PID-15 and also to Comunidad de Madrid who supports the project ROBOCITY2030-III P2013/MIT-2748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisandro J. Puglisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Puglisi, L.J., Saltaren, R.J., Garcia Cena, C.E. (2017). Experimental Identification of Lu-Gre Friction Model in an Hydraulic Actuator. In: Chang, I., Baca, J., Moreno, H., Carrera, I., Cardona, M. (eds) Advances in Automation and Robotics Research in Latin America. Lecture Notes in Networks and Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54377-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54377-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54376-5

  • Online ISBN: 978-3-319-54377-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics