Skip to main content

Ab Initio Modelling of Electrode Material Properties

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

  • 1033 Accesses

Abstract

We discuss elastic and thermodynamic aspects of LiCoO\(_2\) in the context of fracture propagation and hot spot formation. Approaching the problem via ab initio modelling, we can access the delithiated states which is difficult experimentally. Application of density functional theory in the quasi-harmonic approximation provides good agreement in the range of experimentally available data for isobaric heat capacities, suggesting to complement thermodynamic databases required for the modelling of heat flows. The results for the mechanical characteristics suggest a brittle-to-ductile transition with varying lithium contents and crack orientations perpendicular to the basal plane, as indicated by the obtained elastic tensors experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaulieu, L., Beattie, S., Hatchard, T., Dahn, J.: The electrochemical reaction of lithium with tin studied by in situ AFM. J. Electrochem. Soc. 150(4), A419–A424 (2003)

    Article  Google Scholar 

  2. Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190(2), 453–460 (2009)

    Article  Google Scholar 

  3. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006)

    Article  Google Scholar 

  4. Dahn, J.: Phase diagram of Li x C 6. Phys. Rev. B 44(17), 9170 (1991)

    Article  Google Scholar 

  5. Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010)

    Article  Google Scholar 

  6. Du, T., Xu, B., Wu, M., Liu, G., Ouyang, C.: Insight into the vibrational and thermodynamic properties of layered lithium transition-metal oxides LiMO2 (M= Co, Ni, Mn): a first-principles study. J. Phys. Chem. C 120(11), 5876–5882 (2016)

    Article  Google Scholar 

  7. Hector, L., Herbst, J., Capehart, T.: Electronic structure calculations for LaNi 5 and LaNi 5 H 7: energetics and elastic properties. J. Alloy Compd. 353(1), 74–85 (2003)

    Article  Google Scholar 

  8. Huggins, R., Nix, W.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6(1–2), 57–63 (2000)

    Article  Google Scholar 

  9. Imai, Y., Watanabe, A.: Energetics of compounds related to Mg 2 Si as an anode material for lithium-ion batteries using first principle calculations. J. Alloy Compd. 509(30), 7877–7880 (2011)

    Article  Google Scholar 

  10. Jankovsky, O., Kovarik, J., Leitner, J., Rzicka, K., Sedmidubsky, D.: Thermodynamic properties of stoichiometric lithium cobaltite LiCoO 2. Thermochim. Acta 634, 26–30 (2016)

    Article  Google Scholar 

  11. Kevorkov, D., Schmid-Fetzer, R., Zhang, F.: Phase equilibria and thermodynamics of the Mg-Si-Li system and remodeling of the Mg-Si system. J. Phase Equilibr. Diffus. 25(2), 140–151 (2004)

    Article  Google Scholar 

  12. Kresse, G., Furthmüller, J.: Software VASP, vienna (1999). Phys. Rev. B 54(11), 169 (1996)

    Google Scholar 

  13. Kurth, S., Perdew, J.P., Blaha, P.: Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quant. Chem. 75(4–5), 889–909 (1999)

    Article  Google Scholar 

  14. Le Page, Y., Saxe, P.: Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B 63(17), 174103 (2001)

    Article  Google Scholar 

  15. Li, Y., Cheng, Y.T.: Studies of metal hydride electrodes using an electrochemical quartz crystal microbalance. J. Electrochem. Soc. 143(1), 120–124 (1996)

    Article  Google Scholar 

  16. Liu, H., Hu, C., Wu, S.: Ab initio study on the lithiation mechanism of Mg 2 Si electrode. In: 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE), vol. 1, pp. 683–685. IEEE (2011)

    Google Scholar 

  17. Ma, D., Cao, Z., Hu, A.: Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014)

    Article  Google Scholar 

  18. Menetrier, M., Carlier, D., Blangero, M., Delmas, C.: On really stoichiometric LiCoO2. Electrochem. Solid-State Lett. 11(11), A179–A182 (2008)

    Article  Google Scholar 

  19. Moriga, T., Watanabe, K., Tsuji, D., Massaki, S., Nakabayashi, I.: Reaction mechanism of metal silicide Mg 2 Si for Li insertion. J. Solid State Chem. 153(2), 386–390 (2000)

    Article  Google Scholar 

  20. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 224104 (2014)

    Article  Google Scholar 

  21. Park, C.M., Kim, J.H., Kim, H., Sohn, H.J.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39(8), 3115–3141 (2010)

    Article  Google Scholar 

  22. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  Google Scholar 

  23. Pugh, S.: XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  Google Scholar 

  24. Qi, Y., Hector, L.G., James, C., Kim, K.J.: Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. J. Electrochem. Soc. 161(11), F3010–F3018 (2014)

    Article  Google Scholar 

  25. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008)

    Article  Google Scholar 

  26. Shang, S.L., Hector, L.G., Shi, S., Qi, Y., Wang, Y., Liu, Z.K.: Lattice dynamics, thermodynamics and elastic properties of monoclinic Li 2 CO 3 from density functional theory. Acta Materialia 60(13), 5204–5216 (2012)

    Article  Google Scholar 

  27. Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  Google Scholar 

  28. Wang, X., Loa, I., Kunc, K., Syassen, K., Amboage, M.: Effect of pressure on the structural properties and Raman modes of LiCoO 2. Phys. Rev. B 72(22), 224102 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the BMBF project Meet Hi-EnD II.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siaufung O. Dang or Claas Hüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dang, S.O., Prill, M., Hüter, C., Finsterbusch, M., Spatschek, R. (2017). Ab Initio Modelling of Electrode Material Properties. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics