Skip to main content

Historical and Contemporary Global Methane Cycling

  • Chapter
  • First Online:
Carbon Sequestration for Climate Change Mitigation and Adaptation
  • 2566 Accesses

Abstract

Methane (CH4) has been studied as an atmospheric constituent for more than 200 years. However, the first modern measurements of atmospheric CH4 concentration were made by using the infrared absorption and estimated an atmospheric concentration of 2.0 ppmv in 1948. The development of gas chromatography (GC) and the flame ionization detector (FID) in the 1950s led to observations of vertical CH4 distributions in the troposphere and stratosphere , and to establishment of time-series sampling programs starting from 1979. Results from these sampling programs led to suggestions that similar to atmospheric CO2, the concentration of atmospheric CH4 has been increasing. The data indicated that the atmospheric CH4 concentration has increased almost exponentially from 722 ± 4 ppb at the onset of Industrial Revolution in 1750 to 1650 ppb by mid 1980s when global CH4 emissions monitoring started. The current (2015) global annual surface mean abundance is 1845 ± 2 ppb, and a relative abundance of 256% compared to 1750. The mean annual absolute increase during the last 10 years is estimated at 6 ppb CH4 yr−1. The role of CH4 as one of the greenhouse gas (GHG) causing global warming stimulated further research on sources and sinks of CH4, which is emitted from a variety of sources, both of natural and anthropogenic origin. Natural sources account for about 40% of the total, while anthropogenic emissions contributing 60% of the global emissions. The anthropogenic sources fall under the main categories of agriculture, energy, waste, and industry. CH4 is also of interest to microbiologists, but findings from microbiology have entered the larger context of the global CH4 budget only recently. CH4 is the most abundant hydrocarbon in the atmosphere, and its increase by a factor of 2.5 since the Industrial Era has raised concerns due to the potential effects on atmospheric chemistry and climate. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Stratospheric oxidation of CH4 provides a means of introducing water vapor above the tropopause. The CH4 also reacts with atomic chlorine in the stratosphere, forming HCl, a reservoir species for chlorine. Some 90% of the CH4 entering the atmosphere is oxidized through reactions initiated by the OH radical, mostly in the troposphere. These reactions are important in controlling the oxidation state of the atmosphere. The CH4 absorbs infrared (IR) radiation in the troposphere and is an important GHG. On per mole basis, CH4 is more effective a GHG than CO2. Current atmospheric burden is estimated at 4954 ± 10 Tg CH4, with the annual increase estimated at 14 ± 3 Tg CH4 yr−1 from both natural (36.3%) and anthropogenic (63.7%) sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton MT, Marshall AH, Humphreys MW, Macduff JH, Collins RP, Marley CL (2008) Genetic improvement of forage species to reduce the environmental impact of temperate livestock grazing systems. Adv Agron 98:311–355. doi:10.1016/s0065-2113(08)06206-x

    Article  Google Scholar 

  • Alexe M, Bergamaschi P, Segers A, Detmers R, Butz A, Hasekamp O, Guerlet S, Parker R, Boesch H, Frankenberg C, Scheepmaker RA, Dlugokencky E, Sweeney C, Wofsy SC, Kort EA (2015) Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos Chem Phys 15(1):113–133. doi:10.5194/acp-15-113-2015

    Article  CAS  Google Scholar 

  • Allan W, Struthers H, Lowe DC (2007) Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: global model results compared with southern hemisphere measurements. J Geophys Res-Atmos 112:D04306. doi:10.1029/2006jd007369

    Article  CAS  Google Scholar 

  • Alperin MJ, Reeburgh WS (1984) Geochemical observations supporting anaerobic methane oxidation. In: Crawford RL, Hanson RS (eds) Microbial growth on C-I compounds. American Society of Microbiology, Washington, D.C., pp 282–289

    Google Scholar 

  • Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6(4):847–862. doi:10.1038/ismej.2011.141

    Article  CAS  Google Scholar 

  • Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosciences 4(4):521–544

    Article  CAS  Google Scholar 

  • Archer D, Buffett B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci U S A 106(49):20596–20601. doi:10.1073/pnas.0800885105

    Article  CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8(4):307–358. doi:10.1007/bf00052709

    Article  CAS  Google Scholar 

  • Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M, Castellano E, Cattani O, Chappellaz J, DahlJensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Fluckiger J, Hansson ME, Huybrechts P, Jugie R, Johnsen SJ, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov VY, Littot GVC, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel DA, Petit JR, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tabacco IE, Udisti R, van de Wal RSW, van den Broeke M, Weiss J, Wilhelms F, Winther JG, Wolff EW, Zucchelli M, Members EC (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628. doi:10.1038/nature02599

    Article  CAS  Google Scholar 

  • Aydin M, Verhulst KR, Saltzman ES, Battle MO, Montzka SA, Blake DR, Tang Q, Prather MJ (2011) Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476(7359):198–201. doi:10.1038/nature10352

    Article  CAS  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331(6013):50. doi:10.1126/science.1196808

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187. doi:10.1126/science.1169984

    Article  CAS  Google Scholar 

  • Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101(4):261–270. doi:10.1111/j.1574-6968.1992.tb05783.x

    Article  CAS  Google Scholar 

  • Bergamaschi P, Krol M, Dentener F, Vermeulen A, Meinhardt F, Graul R, Ramonet M, Peters W, Dlugokencky EJ (2005) Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmos Chem Phys 5:2431–2460

    Article  CAS  Google Scholar 

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Koerner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite chartography of atmospheric methane from SCIAMACHYon board ENVISAT: 2. Evaluation based on inverse model simulations. J Geophys Res-Atmos 112(D2). doi:10.1029/2006jd007268

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Villani MG, Houweling S, Dentener F, Dlugokencky EJ, Miller JB, Gatti LV, Engel A, Levin I (2009) Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J Geophys Res-Atmos 114. doi:10.1029/2009jd012287

  • Bergamaschi P, Houweling S, Segers A, Krol M, Frankenberg C, Scheepmaker RA, Dlugokencky E, Wofsy SC, Kort EA, Sweeney C, Schuck T, Brenninkmeijer C, Chen H, Beck V, Gerbig C (2013) Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J Geophys Res-Atmos 118(13):7350–7369. doi:10.1002/jgrd.50480

    Article  CAS  Google Scholar 

  • Bignell D (2010) Termites. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, Washington, D.C., pp 62–73

    Google Scholar 

  • Blake DR, Mayer EW, Tyler SC, Makide Y, Montague DC, Rowland FS (1982) Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys Res Lett 9(4):477–480. doi:10.1029/GL009i004p00477

    Article  CAS  Google Scholar 

  • Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327(5963):322–325. doi:10.1126/science.1175176

    Article  CAS  Google Scholar 

  • Blunier T (2000) Paleoclimate—“Frozen” methane escapes from the sea floor. Science 288(5463):68–69. doi:10.1126/science.288.5463.68

    Article  CAS  Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, Stauffer B, Raynaud D (1995) Variations in atmospheric methane concentration during the Holocene Epoch. Nature 374(6517):46–49. doi:10.1038/374046a0

    Article  CAS  Google Scholar 

  • Borgner JE, Spokas K (2010) Landfills. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, Washington, D.C., pp 175–200

    Google Scholar 

  • Born M, Doerr H, Levin I (1990) Methane consumption in aerated soils of temperate zone. Tellus B 42(1):2–8. doi:10.1034/j.1600-0889.1990.00002.x

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215. doi:10.1039/c0ee00203h

    Article  CAS  Google Scholar 

  • Boucher O, Friedlingstein P, Collins B, Shine KP (2009) The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res Lett 4(4). doi:10.1088/1748-9326/4/4/044007

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke E-G, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439–443

    Article  CAS  Google Scholar 

  • Bousquet P, Ringeval B, Pison I, Dlugokencky EJ, Brunke EG, Carouge C, Chevallier F, Fortems-Cheiney A, Frankenberg C, Hauglustaine DA, Krummel PB, Langenfelds RL, Ramonet M, Schmidt M, Steele LP, Szopa S, Yver C, Viovy N, Ciais P (2011) Source attribution of the changes in atmospheric methane for 2006-2008. Atmos Chem Phys 11(8):3689–3700. doi:10.5194/acp-11-3689-2011

    Article  CAS  Google Scholar 

  • Boussingault JB (1834) Annales de Chemie et de Physique, 2e series, t. LVII, p. 171

    Google Scholar 

  • Boussingault JB (1864) Annales de Chemie et de Physique, 7e series, t. LXVI, p. 413

    Google Scholar 

  • BP (2015) BP statistical review of world energy, 64th edn. BP, London, U.K.

    Google Scholar 

  • Brenninkmeijer CAM, Crutzen P, Boumard F, Dauer T, Dix B, Ebinghaus R, Filippi D, Fischer H, Franke H, Friess U, Heintzenberg J, Helleis F, Hermann M, Kock HH, Koeppel C, Lelieveld J, Leuenberger M, Martinsson BG, Miemczyk S, Moret HP, Nguyen HN, Nyfeler P, Oram D, O’Sullivan D, Penkett S, Platt U, Pupek M, Ramonet M, Randa B, Reichelt M, Rhee TS, Rohwer J, Rosenfeld K, Scharffe D, Schlager H, Schumann U, Slemr F, Sprung D, Stock P, Thaler R, Valentino F, van Velthoven P, Waibel A, Wandel A, Waschitschek K, Wiedensohler A, Xueref-Remy I, Zahn A, Zech U, Ziereis H (2007) Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: the new CARIBIC system. Atmos Chem Phys 7(18):4953–4976

    Article  CAS  Google Scholar 

  • Brewer PG, Orr FMJ, Friederich G, Kvenvolden KA, Orange DL, McFarlane J, Kirkwood W (1997) Deep-sea field test of methane hydrate formation from a remotely operated vehicle. Geology 25:407

    Article  CAS  Google Scholar 

  • Brewer PG, Orr FMJ, Friederich G, Kvenvolden KA, Orange DL (1998) Gas hydrate formation in the deep sea: in situ experiments with controlled release of methane, natural gas and carbon dioxide. Energy Fuels 12:183–188

    Article  CAS  Google Scholar 

  • Broecker WS, Stocker TF (2006) The holocene CO2 rise: anthropogenic or natural? EOS 87(3):27. doi:10.1029/2006eo030002

    Article  Google Scholar 

  • Brook E, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentrations during the past 110000 years. Science 273:1087–1091

    Article  CAS  Google Scholar 

  • Brook E, Harder S, Severinghaus JP, Steig EJ, Sucher C (2000) An origin and timing of rapid changes in atmospheric methane during the last glacial period. Glob Biogeochem Cycles 14:559–572

    Article  CAS  Google Scholar 

  • Bruhn D, Moller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plantarum 144(3):201–209. doi:10.1111/j.1399-3054.2011.01551.x

    Article  CAS  Google Scholar 

  • Buiron D, Chappellaz J, Stenni B, Frezzotti M, Baumgartner M, Capron E, Landais A, Lemieux-Dudon B, Masson-Delmotte V, Montagnat M, Parrenin F, Schilt A (2011) TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica. Clim Past 7:1–16. doi:10.5194/cp-7-1-2011

    Article  Google Scholar 

  • Burwicz EB, Ruepke LH, Wallmann K (2011) Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim Cosmochim Acta 75(16):4562–4576. doi:10.1016/j.gca.2011.05.029

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycles 9(1):1–10. doi:10.1029/94gb02651

    Article  CAS  Google Scholar 

  • Chappellaz J, Blunier T, Kints S, Dallenbach A, Barnola JM, Schwander J, Raynaud D, Stauffer B (1997) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the holocene. J Geophys Res-Atmos 102(D13):15987–15997. doi:10.1029/97jd01017

    Article  CAS  Google Scholar 

  • Chen Y-H, Prinn RG (2006) Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J Geophys Res-Atmos 111(D10). doi:10.1029/2005jd006058

  • Christensen TR, Ekberg A, Strom L, Mastepanov M, Panikov N, Oquist M, Svensson BH, Nykanen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30(7). doi:10.1029/2002gl016848

  • Ciais P, Sabine CL, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quere C, Myeneni R, Piao S, Thornton P (2013) Carbon and other boigeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U.K. and New York, USA, pp 465–570

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2(4):299–327. doi:10.1029/GB002i004p00299

    Article  CAS  Google Scholar 

  • Claussen M, Brovkin V, Calov R, Ganopolski A, Kubatzki C (2005) Did humankind prevent a Holocene glaciation? Clim Change 69(2–3):409–417. doi:10.1007/s10584-005-7276-2

    Article  CAS  Google Scholar 

  • Collett TS (2002) Energy resource potential of natural gas hydrates. AAPG Bull 86(11):1971–1992

    CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292. doi:10.1111/j.1758-2229.2009.00038.x

    Article  CAS  Google Scholar 

  • Cooper J, Stamford L, Azapagic A (2016) Shale gas: a review of the economic, environmental, and social sustainability. Energy Technol 4(7):772–792. doi:10.1002/ente.201500464

    Article  Google Scholar 

  • Cottle DJ, Nolan JV, Wiedemann SG (2011) Ruminant enteric methane mitigation: a review. Animal Prod Sci 51(6):491–514. doi:10.1071/an10163

    Article  CAS  Google Scholar 

  • Crevoisier C, Nobileau D, Fiore AM, Armante R, Chedin A, Scott NA (2009) Tropospheric methane in the tropics—first year from IASI hyperspectral infrared observations. Atmos Chem Phys 9(17):6337–6350

    Article  CAS  Google Scholar 

  • Crutzen PJ (1973) Discussion of chemistry of some minor constituents in stratosphere and troposphere. Pure appl Geophys 106(5–7):1385–1399. doi:10.1007/bf00881092

    Article  Google Scholar 

  • Crutzen PJ (1979) The NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7:443–472

    Article  CAS  Google Scholar 

  • Crutzen PJ (1995) On the role of CH4 in atmospheric chemistry: sources, sinks and possible reductions in anthropogenic sources. Ambio 24(1):52–55

    Google Scholar 

  • Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus A 43(4):136–151. doi:10.1034/j.1600-0870.1991.00012.x

    Article  Google Scholar 

  • Cunnold DM, Steele LP, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF, Porter LW, O’Doherty S, Langenfelds RL, Krummel PB, Wang HJ, Emmons L, Tie XX, Dlugokencky EJ (2002) In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences. J Geophys Res-Atmos 107(D14). doi:10.1029/2001jd001226

  • Curry CL (2007) Modeling the soil consumption of atmospheric methane at the global scale. Glob Biogeochem Cycles 21(4). doi:10.1029/2006gb002818

  • Demirbas A (2010a) Methane gas hydrate. Springer, London

    Book  Google Scholar 

  • Demirbas A (2010b) Methane hydrates as potential energy resource: part 1—importance, resource and recovery facilities. Energy Convers Manage 51(7):1547–1561. doi:10.1016/j.enconman.2010.02.013

    Article  CAS  Google Scholar 

  • DeMore WB (1996) Experimental and estimated rate constants for the reactions of hydroxyl radicals with several halocarbons. J Phys Chem 100(14):5813–5820. doi:10.1021/jp953216+

    Article  CAS  Google Scholar 

  • Dentener F, Mv Weele, Krol M, Houweling S, Pv Velthoven (2003) Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations. Atmos Chem Phys 3(1):73–88

    Article  CAS  Google Scholar 

  • Desa E (2001) Submarine methane hydrates potential fuel resource of 21st century. Proc AP Akademi Sci 5(2):101–114

    Google Scholar 

  • Dickens GR (2000) Methane oxidation during the late palaeocene thermal maximum. Bull Soc Geol Fr 171(1):37–49

    CAS  Google Scholar 

  • Dickens GR (2001) Modeling the global carbon cycle with a gas hydrate capacitor: significance for the latest paleocene thermal maximum. In: Natural gas hydrates: occurrence, distribution, and detection. american geophysical union, pp 19–38. doi:10.1029/GM124p0019

  • Dickens GR (2003a) Methane hydrates in quaternary climate change—the clathrate gun hypothesis. Science 299(5609):1017. doi:10.1126/science.1080789

    Article  CAS  Google Scholar 

  • Dickens GR (2003b) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213(3–4):169–183. doi:10.1016/s0012-821x(03)00325-x

    Article  CAS  Google Scholar 

  • Dickens GR, Oneil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10(6):965–971. doi:10.1029/95pa02087

    Article  Google Scholar 

  • Dlugokencky EJ, Steele LP, Lang PM, Masarie KA (1994) The growth rate and distribution of atmospheric methane. J Geophys Res-Atmos 99(D8):17021–17043. doi:10.1029/94jd01245

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, Tans PP (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett 30(19):1992. doi:10.1029/2003gl018126

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Myers RC, Lang PM, Masarie KA, Crotwell AM, Thoning KW, Hall BD, Elkins JW, Steele LP (2005) Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J Geophys Res-Atmos 110(D18). doi:10.1029/2005jd006035

  • Dlugokencky EJ, Bruhwiler L, White JWC, Emmons LK, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell AM, Miller JB, Gatti LV (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36. doi:10.1029/2009gl039780

  • Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philos Trans R Soc Lond Ser A 369(1943):2058–2072. doi:10.1098/rsta.2010.0341

    Article  CAS  Google Scholar 

  • Doorn M, Liles D, Thorneloe S (2000) Quantification of methane emissions from latrines, septic tanks, and stagnant, open sewers in the world. In: van Ham J, Baede APM, Meyer LA, Ybema R (eds) Non-CO2 greenhouse gases: scientific understanding, control and implementation. Springer, Netherlands, pp 83–88. doi:10.1007/978-94-015-9343-4_4

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907. doi:10.1099/ijs.0.033712-0

    Article  CAS  Google Scholar 

  • Ehhalt DH (1986) On the consequence of a tropospheric CH4 increase to the exospheric density. J Geophys Res-Atmos 91(D2):2843. doi:10.1029/JD091iD02p02843

    Article  CAS  Google Scholar 

  • Ehhalt DH, Heidt LE (1973) Vertical profiles of CH4 in the troposphere and stratosphere. J Geophys Res 78(24):5265–5271. doi:10.1029/JC078i024p05265

    Article  CAS  Google Scholar 

  • EPA (1993) Anthopogenic methane emissions in the United States: Estimates for 1990, Report to Congress. Atmospheric pollution prevention division, office of air and radiation, US Environmental Protection Agency, EPA/430/R/93/012 Washington, D.C

    Google Scholar 

  • EPA (2012) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. Office of atmospheric programs, climate change division, US Environmental Protection Agency, EPA 430-R-12-006 Washington, D.C., 176 pp

    Google Scholar 

  • EPA (2015) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2013. United States Environmental Protection Agency, Washington, D.C., 564 pp

    Google Scholar 

  • Etheridge DM, Pearman GI, Fraser PJ (1992) Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core. Tellus B 44(4):282–294. doi:10.1034/j.1600-0889.1992.t01-3-00006.x

    Article  Google Scholar 

  • Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res-Atmos 103(D13):15979–15993. doi:10.1029/98jd00923

    Article  CAS  Google Scholar 

  • Etiope G (2012) Climate Science: Methane uncovered. Nat Geosci 5 (6): 373–374. doi:10.1038/ngeo1483

  • Etiope G (2010) Geological methane. In: Reay D, Smith P, Van Amstel A (eds) Methane and climate change. Earthscan, Washington, D.C., pp 42–61

    Google Scholar 

  • Etiope G, Lassey KR, Klusman RW, Boschi E (2008) Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys Res Lett 35(9):L09307. doi:10.1029/2008GL033623

    Article  CAS  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259):434–438. doi:10.1126/science.aac7745

    Article  CAS  Google Scholar 

  • Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, Meure CMM, Dreier MF, Trudinger CM, van Ommen TD, Langenfelds RL (2005) Unexpected changes to the global methane budget over the past 2000 years. Science 309(5741):1714–1717. doi:10.1126/science.1115193

    Article  CAS  Google Scholar 

  • Ferry JG (2010a) The chemical biology of methanogenesis. Planet Space Sci 58(14–15):1775–1783. doi:10.1016/j.pss.2010.08.014

    Article  CAS  Google Scholar 

  • Ferry JG (2010b) How to make a living by exhaling methane. Annu Rev Microbiol 64:453–473. doi:10.1146/annurev.micro.112408.134051

    Article  CAS  Google Scholar 

  • Fischer H, Behrens M, Bock M, Richter U, Schmitt J, Loulergue L, Chappellaz J, Spahni R, Blunier T, Leuenberger M, Stocker TF (2008) Changing boreal methane sources and constant biomass burning during the last termination. Nature 452(7189):864–867. doi:10.1038/nature06825

    Article  CAS  Google Scholar 

  • Fisher RE, Sriskantharajah S, Lowry D, Lanoiselle M, Fowler CMR, James RH, Hermansen O, Myhre CL, Stohl A, Greinert J, Nisbet-Jones PBR, Mienert J, Nisbet EG (2011) Arctic methane sources: isotopic evidence for atmospheric inputs. Geophys Res Lett 38. doi:10.1029/2011gl049319

  • Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola JM (2002) High-resolution holocene N2O ice core record and its relationship with CH4 and CO2. Glob Biogeochem Cycles 16(1). doi:10.1029/2001gb001417

  • Flückiger J, Blunier T, Stauffer B, Chappellaz J, Spahni R, Kawamura K, Schwander J, Stocker TF, Dahl-Jensen D (2004) N2O and CH4 variations during the last glacial epoch: insight into global processes. Glob Biogeochem Cycles 18:GB1020. doi:10.1029/2003gb002122

  • Francey RJ, Steele LP, Langenfelds RL, Pak BC (1999) High precision long-term monitoring of radiatively active and related trace gases at surface sites and from aircraft in the southern hemisphere atmosphere. J Atmos Sci 56(2):279–285. doi:10.1175/1520-0469(1999)056<0279:hpltmo>2.0.co;2

    Article  Google Scholar 

  • Frankenberg C, Aben I, Bergamaschi P, Dlugokencky EJ, van Hees R, Houweling S, van der Meer P, Snel R, Tol P (2011) Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: trends and variability. J Geophys Res-Atmos 116. doi:10.1029/2010jd014849

  • Fuglestvedt JS, Bernsten TK, Isaksen ISA, Mao H, Liang X-Z, Wang W-C (2000) Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos Environ 33:961–977

    Article  Google Scholar 

  • Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, Qin L, Sato Y-I, Hijmans RJ (2011) The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21(5):743–759. doi:10.1177/0959683611398052

    Article  Google Scholar 

  • Gautier A (1901) Annales Chem Phys 22, June 1

    Google Scholar 

  • Glasby GP (2003) Potential impact on climate of the exploitation of methane hydrate deposits offshore. Mar Pet Geol 20(2):163–175. doi:10.1016/s0264-8172(03)00021-7

    Article  CAS  Google Scholar 

  • Gornitz V, Fung I (1994) Potential distribution of methane hydrates in the worlds oceans. Glob Biogeochem Cycles 8(3):335–347. doi:10.1029/94gb00766

    Article  CAS  Google Scholar 

  • Graedel TE, McRae JE (1980) On the possible increase of atmospheric methane and carbon monoxide concentration during the last decade. Geophys Res Lett 7(11):977–979. doi:10.1029/GL007i011p00977

    Article  CAS  Google Scholar 

  • Grant NJ, Whiticar MJ (2002) Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Glob Biogeochem Cycles 16(4). doi:10.1029/2001gb001851

  • Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci U S A 108(49):19657–19661. doi:10.1073/pnas.1110716108

    Article  CAS  Google Scholar 

  • Hansen JE, Sato M (2001) Trends of measured climate forcing agents. Proc Natl Acad Sci U S A 98(26):14778–14783. doi:10.1073/pnas.261553698

    Article  CAS  Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate change as forecast by goodard institute for space studies 3-dimensional model. J Geophys Res-Atmos 93(D8):9341–9364. doi:10.1029/JD093iD08p09341

    Article  CAS  Google Scholar 

  • Harden JW, Koven CD, Ping C-L, Hugelius G, McGuire AD, Camill P, Jorgenson T, Kuhry P, Michaelson GJ, O’Donnell JA, Schuur EAG, Tarnocai C, Johnson K, Grosse G (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys Res Lett 39. doi:10.1029/2012gl051958

  • Heimann AC, Batstone DJ, Jakobsen R (2006) Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl Environ Microb 72(4):2942–2949. doi:10.1128/aem.72.4.2942-2949.2006

  • Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Bell HSM, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406(6794):392–395. doi:10.1038/35019044

    Article  CAS  Google Scholar 

  • Hester KC, Brewer PG (2009) Clathrate hydrates in nature. Annu Rev Mar Sci 1:303–327. doi:10.1146/annurev.marine.010908.163824

    Article  Google Scholar 

  • Higgins IJ, Best DJ, Hammond RC (1980) New findings in methane-utilizing Bactria highlight their importance in the biosphere and their commercial potential. Nature 286(5773):561–564. doi:10.1038/286561a0

    Article  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ (2014) Methane minimalism. Nature 507(7493):436–437

    Article  CAS  Google Scholar 

  • Hofmann DJ, Butler JH, Dlugokencky EJ, Elkins JW, Masarie K, Montzka SA, Tans P (2006) The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the annual greenhouse gas index (AGGI). Tellus B 58(5):614–619. doi:10.1111/j.1600-0889.2006.00201.x

    Article  CAS  Google Scholar 

  • Holmes CD, Prather MJ, Sovde OA, Myhre G (2013) Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos Chem Phys 13(1):285–302. doi:10.5194/acp-13-285-2013

    Article  CAS  Google Scholar 

  • Houweling S, van der Werf GR, Goldewijk KK, Roeckmann T, Aben I (2008) Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium. Glob Biogeochem Cycles 22(1). doi:10.1029/2007gb002961

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London

    Google Scholar 

  • Huber C, Leuenberger M, Spahni R, Fluckiger J, Schwander J, Stocker TF, Johnsen S, Landals A, Jouzel J (2006) Isotope calibrated Greenland temperature record over marine isotope stage 3 and its relation to CH4. Earth Planet Sci Lett 243(3–4):504–519. doi:10.1016/j.epsl.2006.01.002

    Article  CAS  Google Scholar 

  • Hurst DF, Oltmans SJ, Voemel H, Rosenlof KH, Davis SM, Ray EA, Hall EG, Jordan AF (2011) Stratospheric water vapor trends over Boulder, Colorado: analysis of the 30 year boulder record. J Geophys Res-Atmos 116. doi:10.1029/2010jd015065

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126

    Article  CAS  Google Scholar 

  • Jäckel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33(7–8):965–971. doi:10.1016/s0038-0717(00)00248-0

    Article  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Lett 88(3–4):181–197. doi:10.1111/j.1574-6968.1992.tb04987.x

    Article  CAS  Google Scholar 

  • Johnston HS (1984) Human effects on the global atmosphere. Annu Rev Phys Chem 35:481–505. doi:10.1146/annurev.physchem.35.1.481

    Article  CAS  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci U S A 105(5):1425–1430. doi:10.1073/pnas.0707386105

    Article  CAS  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) EPICA Dome C ice core 800KYr deuterium data and temperature estimates. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA

    Google Scholar 

  • Kai FM, Tyler SC, Randerson JT, Blake DR (2011) Reduced methane growth rate explained by decreased northern hemisphere microbial sources. Nature 476(7359):194–197. doi:10.1038/nature10259

    Article  CAS  Google Scholar 

  • Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and holocene fluctuations of atmospheric methane concentrations. Glob Biogeochem Cycles 20(2). doi:10.1029/2005gb002590

  • Karakurt I, Aydin G, Aydiner K (2012) Sources and mitigation of methane emissions by sectors: a critical review. Renew Energy 39(1):40–48. doi:10.1016/j.renene.2011.09.006

    Article  CAS  Google Scholar 

  • Karion A, Sweeney C, Petron G, Frost G, Hardesty RM, Kofler J, Miller BR, Newberger T, Wolter S, Banta R, Brewer A, Dlugokencky E, Lang P, Montzka SA, Schnell R, Tans P, Trainer M, Zamora R, Conley S (2013) Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys Res Lett 40(16):4393–4397. doi:10.1002/grl.50811

    Article  CAS  Google Scholar 

  • Kasibhatla P, Heimann M, Rayner P, Mahowald N, Prinn RG, Hartley DE (2000) Inverse methods in global biogeochemical cycles. Geophysical monograph 114. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14(7):1646–1654. doi:10.1111/j.1462-2920.2011.02611.x

    Article  CAS  Google Scholar 

  • Katz ME, Pak DK, Dickens GR, Miller KG (1999) The source and fate of massive carbon input during the latest paleocene thermal maximum. Science 286(5444):1531–1533. doi:10.1126/science.286.5444.1531

    Article  CAS  Google Scholar 

  • Kelliher FM, Clark H (2010) Ruminants. In: Reay D, Smith P, van Amstel A (eds) Methane and Climate change. Earthscan, Washington, D.C., pp 136–150

    Google Scholar 

  • Kennett JP (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. Special Publication 54. American Geophysical Union, Washington, D.C., p 216

    Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288(5463):128–133. doi:10.1126/science.288.5463.128

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191. doi:10.1038/nature04420

    Article  CAS  Google Scholar 

  • Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttila AM, Rockmann T, Schnitzler J-P (2009) Methane formation in aerobic environments. Environ Chem 6(6):459–465. doi:10.1071/en09137

    Article  CAS  Google Scholar 

  • Khalil MAK, Butenhoff CL, Rasmussen RA (2007) Atmospheric methane: trends and cycles of sources and sinks. Environ Sci Technol 41(7):2131–2137. doi:10.1021/es061791t

    Article  CAS  Google Scholar 

  • King GM (1992) Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microb Ecol 12:431–468

    Article  CAS  Google Scholar 

  • King GM, Roslev P, Skovgaard H (1990) Distribution and rate of methane oxidation in sediments of the Florida everglades. Appl Environ Microb 56(9):2902–2911

    CAS  Google Scholar 

  • Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33(6):521–530. doi:10.1071/fp06051

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823. doi:10.1038/ngeo1955

    Article  CAS  Google Scholar 

  • Köhler P, Knorr G, Buiron D, Lourantou A, Chappellaz J (2011) Abrupt rise in atmospheric CO2 at the onset of the Bølling/Allerød: in-situ ice core data versus true atmospheric signals. Clim Past 7(2):473–486. doi:10.5194/cp-7-473-2011

    Article  Google Scholar 

  • Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1(5):336–346. doi:10.1111/j.1758-2229.2009.00047.x

    Article  CAS  Google Scholar 

  • Konijnendijk TYM, Weber SL, Tuenter E, van Weele M (2011) Methane variations on orbital timescales: a transient modeling experiment. Clim Past 7(2):635–648. doi:10.5194/cp-7-635-2011

    Article  Google Scholar 

  • Kvenvolden KA (1993a) Gas hydrates as apotential energy resource—a review of their methane content. In: Howell DG (ed) The future energy gases—United States Geological Survey Professional Paper No. 1570. United States Government Printing Office, Washington, D.C., pp 555–561

    Google Scholar 

  • Kvenvolden KA (1993b) Gas hydrates: geological perspectives and global change. Rev Geophys 31(2):173–187. doi:10.1029/93rg00268

    Article  Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change, vol 137. Geological Society Special Publications, London, pp 9–30. doi:10.1144/gsl.sp.1998.137.01.02

  • Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci U S A 96(7):3420–3426. doi:10.1073/pnas.96.7.3420

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. In: Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, pp 3–18. doi:10.1029/GM124p0003

  • Lamarque JF, Shindell DT, Josse B, Young PJ, Cionni I, Eyring V, Bergmann D, Cameron-Smith P, Collins WJ, Doherty R, Dalsoren S, Faluvegi G, Folberth G, Ghan SJ, Horowitz LW, Lee YH, MacKenzie IA, Nagashima T, Naik V, Plummer D, Righi M, Rumbold ST, Schulz M, Skeie RB, Stevenson DS, Strode S, Sudo K, Szopa S, Voulgarakis A, Zeng G (2013) The atmospheric chemistry and climate model intercomparison project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geosci Model Dev 6(1):179–206. doi:10.5194/gmd-6-179-2013

    Article  CAS  Google Scholar 

  • Lassey KR, Ragnauth S (2010) Balancing the global methane budget: constraints imposed by isotopes and anthropogenic emission inventories. J Integr Environ Sci 7:97–107. doi:10.1080/19438151003680843

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2):128–150. doi:10.1034/j.1600-0889.1998.t01-1-00002.x

    Article  Google Scholar 

  • Lelieveld J, Dentener FJ, Peters W, Krol MC (2004) On the role of hydroxyl radicals in self-cleansing capacity of the troposphere. Atmos Chem Phys 4:2337–2344

    Article  CAS  Google Scholar 

  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452(7188):737–740. doi:10.1038/nature06870

    Article  CAS  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, Neu TR, Schuettmann I, Greule M, Kammann C, Schnell S, Mueller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3. doi:10.1038/ncomms2049

  • Lerche I, Bagirov E (1998) Guide to gas hydrate stability in various geological settings. Mar Pet Geol 15(5):427–437. doi:10.1016/s0264-8172(98)00013-0

    Article  CAS  Google Scholar 

  • Levin I, Veidt C, Vaughn BH, Brailsford G, Bromley T, Heinz R, Lowe D, Miller JB, Poβ C, White JWC (2012) No inter-hemispheric δ13CH4 trend observed. Nature 486(7404):E3–E4. doi:10.1038/nature11175

    Article  CAS  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1):PA1003. doi:10.1029/2004pa001071

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann N Y Acad Sci 1125:171–189. doi:10.1196/annals.1419.019

    Article  CAS  Google Scholar 

  • Lloyd K (2015) Beyond known methanogens. Science 350(6259):384. doi:10.1126/science.aad4066

    Article  Google Scholar 

  • Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100(16):3792–3798. doi:10.1016/j.biortech.2008.12.006

    Article  CAS  Google Scholar 

  • Loulergue L, Chappellaz JA, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF (2008a) EPICA Dome C—800,000 methane data. NOAA paleoclimatology. World data center for paleoclimatology, National Oceanic and Atmospheric Administration (NOAA) (accessed from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy)

    Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008b) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453(7193):383–386. doi:10.1038/nature06950

    Article  CAS  Google Scholar 

  • Lowe DC, Schmidt U (1983) Formaldehyde (HCHO) measurements in the nonurban atmosphere. J Geophys Res-Atmos 88:10844–10858

    Article  CAS  Google Scholar 

  • Macdonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB (1998) Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos Environ 32(19):3219–3227. doi:10.1016/s1352-2310(97)00464-0

    Article  CAS  Google Scholar 

  • MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33(14). doi:10.1029/2006gl026152

  • Mahajan D, Taylor CE, Mansoori GA (2007) An introduction to natural gas hydrate/clathrate: the major organic carbon reserve of the earth. J Petrol Sci Eng 56(1–3):1–8. doi:10.1016/j.petrol.2006.09.006

    Article  CAS  Google Scholar 

  • Makogon YF (1965) Hydrate formation in gas-bearing beds under permafrost conditions. Gazovaia Promyshlennost 5:14–15

    Google Scholar 

  • Masson-Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre MF, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E (2006) Past temperature reconstructions from deep ice cores: relevance for future climate change. Clim Past 2(2):145–165

    Article  Google Scholar 

  • Max MD, Dillon WP (1998) Oceanic methane hydrate: the character of the Blake Ridge hydrate stability zone, and the potential for methane extraction. J Pet Geol 21(3):343–358. doi:10.1111/j.1747-5457.1998.tb00786.x

    Article  CAS  Google Scholar 

  • Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zuercher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10(2):753–788. doi:10.5194/bg-10-753-2013

    Article  Google Scholar 

  • Migeotte MV (1948) Spectroscopic evidence of methane in the earth’s atmosphere. Phys Rev 73(5):519–520. doi:10.1103/PhysRev.73.519.2

    Article  CAS  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci Rev 66(3–4):183–197. doi:10.1016/j.earscirev.2003.11.002

    Article  CAS  Google Scholar 

  • Mischler JA, Sowers TA, Alley RB, Battle M, McConnell JR, Mitchell L, Popp T, Sofen E, Spencer MK (2009) Carbon and hydrogen isotopic composition of methane over the last 1000 years. Glob Biogeochem Cycles 23:GB4024. doi:10.1029/2009gb003460

  • Mitchell C (1993) Methane emissions from the coal and natural gas industries in the UK. Chemosphere 26 (1): 441–446. doi:http://dx.doi.org/10.1016/0045-6535(93)90436-9

  • Mitchell LE, Brook EJ, Sowers T, McConnell JR, Taylor K (2011) Multidecadal variability of atmospheric methane, 1000-1800 C.E. J Geophys Res Biogeosci 116: G02007. doi:10.1029/2010jg001441

  • Monteil G, Houweling S, Dlugockenky EJ, Maenhout G, Vaughn BH, White JWC, Rockmann T (2011) Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio and isotopic composition. Atmos Chem Phys 11(17):9141–9153. doi:10.5194/acp-11-9141-2011

    Article  CAS  Google Scholar 

  • Montzka SA, Krol M, Dlugokencky E, Hall B, Joeckel P, Lelieveld J (2011) Small interannual variability of global atmospheric hydroxyl. Science 331(6013):67–69. doi:10.1126/science.1197640

    Article  CAS  Google Scholar 

  • Morino I, Uchino O, Inoue M, Yoshida Y, Yokota T, Wennberg PO, Toon GC, Wunch D, Roehl CM, Notholt J, Warneke T, Messerschmidt J, Griffith DWT, Deutscher NM, Sherlock V, Connor B, Robinson J, Sussmann R, Rettinger M (2011) Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos Meas Tech 4(6):1061–1076. doi:10.5194/amt-4-1061-2011

    Article  CAS  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, vol 8. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417. doi:10.1111/1462-2920.12149

    Article  CAS  Google Scholar 

  • Neef L, van Weele M, van Velthoven P (2010) Optimal estimation of the present-day global methane budget. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003661

  • Nisbet EG, Chappellaz J (2009) Shifting gear, quickly. Science 324(5926):477–478. doi:10.1126/science.1172001

    Article  CAS  Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, Lopez-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. P R Soc B 276(1660):1347–1354. doi:10.1098/rspb.2008.1731

    Article  CAS  Google Scholar 

  • Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343(6170):493–495. doi:10.1126/science.1247828

    Article  CAS  Google Scholar 

  • NOAA (2015) The NOAA annual greengouse gas index (AGGI). Earth system research laboratory, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. www.esrl.noaa.gov/gmd/aggi/aggi.html. Accessed 15 Mar 2015

  • Norris RD, Rohl U (1999) Carbon cycling and chronology of climate warming during the palaeocene/eocene transition. Nature 401(6755):775–778. doi:10.1038/44545

    Article  CAS  Google Scholar 

  • Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457. doi:10.1146/annurev-micro-092412-155614

    Article  CAS  Google Scholar 

  • Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos Chem Phys 7(16):4419–4444

    Article  CAS  Google Scholar 

  • Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landais A, Wegner A, Jouze J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339(6123):1060–1063. doi:10.1126/science.1226368

    Article  CAS  Google Scholar 

  • Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21(8):423–424. doi:10.1016/j.tree.2006.05.017

    Article  Google Scholar 

  • Patra PK, Houweling S, Krol M, Bousquet P, Belikov D, Bergmann D, Bian H, Cameron-Smith P, Chipperfield MP, Corbin K, Fortems-Cheiney A, Fraser A, Gloor E, Hess P, Ito A, Kawa SR, Law RM, Loh Z, Maksyutov S, Meng L, Palmer PI, Prinn RG, Rigby M, Saito R, Wilson C (2011) TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos Chem Phys 11(24):12813–12837. doi:10.5194/acp-11-12813-2011

    Article  CAS  Google Scholar 

  • Paul CK, Dillon WP (2001) Natural gas hydrates: occurence, distribution, and detection. Geophysical monograph series, vol 124. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales,” thermoplasmatales-related Archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microb 78(23):8245–8253. doi:10.1128/aem.02193-12

    Article  CAS  Google Scholar 

  • Paull CK, Ussler W, Borowski WS (1994) Sources of biogenic methane to form marine gas hydrates: in-situ production or upward migration. In: Sloan ED, Happel J, Hnatow MA (eds) International conference on natural gas hydrates, vol 715. Annals of the New York Academy of Sciences, pp 392–409. doi:10.1111/j.1749-6632.1994.tb38852.x

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436. doi:10.1038/20859

    Article  CAS  Google Scholar 

  • Pollock W, Heidt LE, Lueb R, Ehhalt DH (1980) Measurement of stratospheric water vapor by cryogenic collection. J Geophys Res-Oc Atm 85(NC10):5555–5568. doi:10.1029/JC085iC10p05555

    Article  CAS  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4. doi:10.1038/ncomms2432

  • Prather MJ, Holmes CD, Hsu J (2012) Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys Res Lett 39(9)

    Google Scholar 

  • Quay P, Stutsman J, Wilbur D, Snover A, Dlugokencky E, Brown T (1999) The isotopic composition of atmospheric methane. Glob Biogeochem Cycles 13(2):445–461. doi:10.1029/1998gb900006

    Article  CAS  Google Scholar 

  • Ramanathan V (1988) The greenhouse theory of climate change: a test by an inadvert global experiment. Science 240(4850):293–299. doi:10.1126/science.240.4850.293

    Article  CAS  Google Scholar 

  • Ramanathan V, Cicerone RJ, Singh HB, Kiehl JT (1985) Trace gas trends and their potential role in climate change. J Geophys Res-Atmos 90(ND3):5547–5566. doi:10.1029/JD090iD03p05547

    Article  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK (1981) Atmospheric methane CH4: trends and season cycles. J Geophys Res-Oc Atm 86(NC10):9826–9832. doi:10.1029/JC086iC10p09826

    Article  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK (1984) Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J Geophys Res-Atmos 89(ND7):1599–1605. doi:10.1029/JD089iD07p11599

    Article  Google Scholar 

  • Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259(5097):926–934

    Article  CAS  Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47(3):345–352. doi:10.1016/0012-821x(80)90021-7

    Article  CAS  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513. doi:10.1021/cr050362v

    Article  CAS  Google Scholar 

  • Reeburgh WS (2014) Global methane biogeochemistry. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 71–94. doi:10.1016/B978-0-08-095975-7.00403-4

  • Rehder G, Kirby SH, Durham WB, Stern LA, Peltzer ET, Pinkston J, Brewer PG (2004) Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochim Cosmochim Acta 68(2):285–292. doi:10.1016/j.gca.2003.07.001

    Article  CAS  Google Scholar 

  • Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O’Doherty S, Salameh PK, Wang HJ, Harth CM, Muehle J, Porter LW (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35(22). doi:10.1029/2008gl036037

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293. doi:10.1023/B:CLIM.0000004577.17928.fa

    Article  CAS  Google Scholar 

  • Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45(3). doi:10.1029/2006rg000207

  • Sapart CJ, Monteil G, Prokopiou M, van de Wal RSW, Kaplan JO, Sperlich P, Krumhardt KM, van der Veen C, Houweling S, Krol MC, Blunier T, Sowers T, Martinerie P, Witrant E, Dahl-Jensen D, Rockmann T (2012) Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490(7418):85–88. doi:10.1038/nature11461

    Article  CAS  Google Scholar 

  • Sapart CJ, Martinerie P, Witrant E, Chappellaz J, van de Wal RSW, Sperlich P, van der Veen C, Bernard S, Sturges WT, Blunier T, Schwander J, Etheridge D, Rockmann T (2013) Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements? Atmos Chem Phys 13(14):6993–7005. doi:10.5194/acp-13-6993-2013

    Article  CAS  Google Scholar 

  • Sassen R, Macdonald IR (1994) Evidence of structure-H hydrate, gulf of Mexico continental slope. Org Geochem 22(6):1029–1032. doi:10.1016/0146-6380(94)90036-1

    Article  CAS  Google Scholar 

  • Savolainen I, Monni S, Syri S (2011) The mitigation of methane emissions from the industrialised countries can explain the atmospheric concentration level-off. Int J Energ Clean Environ 10(1–4):193–201. doi:10.1615/InterJEnerCleanEnv.001603

    Google Scholar 

  • Schuck TJ, Ishijima K, Patra PK, Baker AK, Machida T, Matsueda H, Sawa Y, Umezawa T, Brenninkmeijer CAM, Lelieveld J (2012) Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. J Geophys Res-Atmos 117. doi:10.1029/2012jd018199

  • Schuur EAG, Abbott B, Permafrost Carbon N (2011) High risk of permafrost thaw. Nature 480(7375):32–33

    Article  CAS  Google Scholar 

  • Schwander J, Stauffer B (1984) Age difference between polar ice and the air trapped in its bubbles. Nature 311(5981):45–47. doi:10.1038/311045a0

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531. doi:10.1111/j.1574-6976.2010.00212.x

    Article  CAS  Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391(6663):141–146. doi:10.1038/34346

    Article  CAS  Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O (2010) Extensive methane venting to the atmosphere from sediments of the east Siberian Arctic shelf. Science 327(5970):1246–1250. doi:10.1126/science.1182221

    Article  CAS  Google Scholar 

  • Sherwood O, Schwietzke S, Arling V, Etiope G (2016) Global inventory of fossil and non-fossil methane δ13C source signature measurements for improved atmospheric modeling. National Oceanic & Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL), Global Monitoring Division. 10.15138/G37P4D. Accessed 20 Oct 2016

  • Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophys Res Lett 31(21):L21202. doi:10.1029/2004gl021009

    Article  CAS  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452. doi:10.1146/annurev-micro-090110-102844

    Article  CAS  Google Scholar 

  • Simpson IJ, Sulbaek Andersen MP, Meinardi S, Bruhwiler L, Blake NJ, Helmig D, Rowland FS, Blake DR (2012) Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature 488(7412):490–494. doi:10.1038/nature11342

    Article  CAS  Google Scholar 

  • Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470(7332):82–85. doi:10.1038/nature09739

    Article  CAS  Google Scholar 

  • Sloan ED Jr (1998) Clathrate hydrates of natural gas, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Smemo K, Yavitt J (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8(3):779–793

    Article  CAS  Google Scholar 

  • Sowers T (2010) Atmospheric methane isotope records covering the holocene period. Quat Sci Rev 29(1–2):213–221. doi:10.1016/j.quascirev.2009.05.023

    Article  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577. doi:10.1038/nrmicro2166

    Article  CAS  Google Scholar 

  • Stauffer B, Fischer G, Neftel A, Oeschger H (1985) Increase of atmospheric methane recorded in antarctic ice core. Science 229(4720):1386–1388. doi:10.1126/science.229.4720.1386

    Article  CAS  Google Scholar 

  • Stauffer B, Fluckiger J, Monnin E, Schwander M, Barnola JM, Chappellaz J (2002) Atmospheric CO2, CH4 and N2O records over the past 60,000 years based on the comparison of different polar ice cores. In: Wolff EW (ed) Annals of Glaciology, vol 35, pp 202–208. doi:10.3189/172756402781816861

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4). doi:10.1029/2003pa000920

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–29

    Google Scholar 

  • Subak S (1994) Methane from the house-of-tudor and the Ming-dynasty—anthropogenic emissions in the 16th-century. Chemosphere 29(5):843–854. doi:10.1016/0045-6535(94)90157-0

    Article  CAS  Google Scholar 

  • Sundquist ET, Ackerman KV (2014) The geologic history of the carbon cycle. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 361–398. doi:10.1016/B978-0-08-095975-7.00809-3

  • Talyan V, Dahiya RP, Anand S, Sreekrishnan TR (2007) Quantification of methane emission from municipal solid waste disposal in Delhi. Resour Conserv Recy 50(3):240–259. doi:10.1016/j.resconrec.2006.06.002

    Article  Google Scholar 

  • Taraborrelli D, Lawrence MG, Crowley JN, Dillon TJ, Gromov S, Gross CBM, Vereecken L, Lelieveld L (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat Geosci 5(4):300. doi:10.1038/ngeo1433 (p 190)

    Article  CAS  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:Gb2023. doi:10.1029/2008gb003327

  • Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Onin Microb 14(3):292–299. doi:10.1016/j.mib.2011.03.003

    Article  CAS  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591. doi:10.1038/nrmicro1931

    Article  CAS  Google Scholar 

  • Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32(7):1243–1257. doi:10.1016/j.renene.2006.04.020

    Article  CAS  Google Scholar 

  • Torres ME, Wallmann K, Trehu AM, Bohrmann G, Borowski WS, Tomaru H (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off oregon. Earth Planet Sci Lett 226(1–2):225–241. doi:10.1016/j.epsl.2004.07.029

    Article  CAS  Google Scholar 

  • Valentine DL, Blanton DC, Reeburgh WS, Kastner M (2001) Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochim Cosmochim Acta 65(16):2633–2640. doi:10.1016/s0016-7037(01)00625-1

    Article  CAS  Google Scholar 

  • Van Amstel A (2012) Methane. A review. J Integr Environ Sci 9(SI):5–30. doi:10.1080/1943815x.2012.694892

  • Van der Nat F, De Brouwer J, Middelburg JJ, Laanbroek HJ (1997) Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Appl Environ Microb 63(12):4734–4740

    Google Scholar 

  • van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1(2):119–123. doi:10.1038/nclimate1101

    Article  CAS  Google Scholar 

  • Velichko AA, Kremenetski CV, Borisova OK, Zelikson EM, Nechaev VP, Faure H (1998) Estimates of methane emission during the last 125,000 years in Northern Eurasia. Glob Planet Change 17:159–180

    Article  Google Scholar 

  • Vogt PR, Jung WY (2002) Holocene mass wasting on upper non-Polar continental slopes—due to post-glacial ocean warming and hydrate dissociation? Geophys Res Lett 29(9). doi:10.1029/2001gl013488

  • Voulgarakis A, Naik V, Lamarque JF, Shindell DT, Young PJ, Prather MJ, Wild O, Field RD, Bergmann D, Cameron-Smith P, Cionni I, Collins WJ, Dalsoren SB, Doherty RM, Eyring V, Faluvegi G, Folberth GA, Horowitz LW, Josse B, MacKenzie IA, Nagashima T, Plummer DA, Righi M, Rumbold ST, Stevenson DS, Strode SA, Sudo K, Szopa S, Zeng G (2013) Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos Chem Phys 13(5):2563–2587. doi:10.5194/acp-13-2563-2013

    Article  CAS  Google Scholar 

  • Walter Anthony KM, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci 5:419–426. doi:10.1038/ngeo1480

    Article  CAS  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107):71–75. doi:10.1038/nature05040

    Article  CAS  Google Scholar 

  • Walter KM, Smith LC, Stuart Chapin F (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc Lond Ser A 365(1856):1657–1676. doi:10.1098/rsta.2007.2036

    Article  CAS  Google Scholar 

  • Wecht KJ, Jacob DJ, Wofsy SC, Kort EA, Worden JR, Kulawik SS, Henze DK, Kopacz M, Payne VH (2012) Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources. Atmos Chem Phys 12(4):1823–1832. doi:10.5194/acp-12-1823-2012

    Article  CAS  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Paelike H, Osborne AH, Nisbet EG, Minshull TA, Lanoiselle M, James RH, Huehnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Moeller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36. doi:10.1029/2009gl039191

  • Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102(1–3):135–151

    Article  CAS  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and fresh-water environments—CO2 reduction vs acetate fermentation isotope evidence. Geochim Cosmochim Acta 50(5):693–709. doi:10.1016/0016-7037(86)90346-7

    Article  CAS  Google Scholar 

  • Wild O, Palmer PI (2008) How sensitive is tropospheric oxidation to anthropogenic emissions? Geophys Res Lett 35(22). doi:10.1029/2008gl035718

  • Winckler G, Aeschbach-Hertig W, Holocher J, Kipfer R, Levin I, Poss C, Rehder G, Suess E, Schlosser P (2002) Noble gases and radiocarbon in natural gas hydrates. Geophys Res Lett 29(10). doi:10.1029/2001gl014013

  • WMO (2016) World Meteorological Organization (WMO) greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observation through 2015. Bulletin No. 12. World Meteorological Organization (WMO), Global Atmosphere Watch (GAW), Geneva, Switzerland, 8 pp

    Google Scholar 

  • Wofsy SC (1976) Interactions of CH4 and CO in earths atmosphere. Annu Rev Earth Pl Sci 4:441–469. doi:10.1146/annurev.ea.04.050176.002301

    Article  CAS  Google Scholar 

  • Wolfe RS (2004) Pistola di volta: recreating volta’s 19th century displays of energy released from methane provides insight into anaerobic microbial metabolism. Am Soc Microbiol News 70:16–18

    Google Scholar 

  • Wolff EW (2011) Greenhouse gases in the earth system: a palaeoclimate perspective. Philos Trans R Soc Ser A 369(1943):2133–2147. doi:10.1098/rsta.2010.0225

    Article  CAS  Google Scholar 

  • Wolff E, Spahni R (2007) Methane and nitrous oxide in the ice core record. Philos Trans R Soc Series A 365(1856):1775–1792. doi:10.1098/rsta.2007.2044

    Article  CAS  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57(3–4):177–210. doi:10.1016/s0012-8252(01)00062-9

    Article  CAS  Google Scholar 

  • Xu C-G, Li X-S (2015) Research progress on methane production from natural gas hydrates. RSC Adv 5(67):54672–54699. doi:10.1039/c4ra10248g

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Nguyen T-D, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507(7493):488–491. doi:10.1038/nature13164

    Article  CAS  Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycles 18(3). doi:10.1029/2004gb002239

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D., Lal, R. (2017). Historical and Contemporary Global Methane Cycling. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_7

Download citation

Publish with us

Policies and ethics