Skip to main content

Design of Porous, Core-Shell, and Hollow Nanofibers

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Electrospinning can be used to prepare various organic or inorganic nanofibrous structures. These structures could be related to the nanofibers arrangement relative to each other, as random, aligned, 3D, and yarn, or they could be related to the single nanofiber structure and morphology, or both. In the electrospinning process, nanofibers could be produced to have surface or internal porous structure. Considering the type of material which is used, different methods are introduced to get the desired porosity in nanofibers such as chemical etching, blend solution, effect of humidity, and different post-treatment methods. Also, by using different methods, it is possible to produce core-shell nanofibers or hollow ones. For fabrication of the core-shell nanofibers, one method is to use the special coaxial nozzle. However, there are other techniques to get core-shell nanofibers like emulsion precursor solution, different methods of surface coating, and so on. Based on the diversity of techniques, in this chapter an attempt is made to cover the most usable methods to get the porous, core-shell, and hollow nanofibers and present some applications for each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yousefzadeh M, Ramakrishna S (2017) Modeling performance of electrospun nanofibers and nanofibrous assembles. In: Ashanti M (ed) Electrospun nanofibers. Woodhwad Publishing, Cambridge, pp 303–337

    Chapter  Google Scholar 

  2. Ramakrishna S, Fujihara K, Teo W-E et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  3. Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley, Weinheim

    Book  Google Scholar 

  4. Ji L, Lin Z, Medford AJ, Zhang X (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO 2 composites as an energy storage material. Carbon 47(14):3346–3354

    Article  CAS  Google Scholar 

  5. Ji L, Zhang X (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705

    Article  CAS  Google Scholar 

  6. Go D, Lott P, Stollenwerk J et al (2016) Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity. ACS Appl Mater Interfaces 8(42):28412–28417

    Article  CAS  Google Scholar 

  7. Zhang T, Zhou P, Xiao B et al (2017) Controllable synthesis of porous C x N y nanofibers with enhanced electromagnetic wave absorption property. Ceram Int 43(12):8603–8610

    Article  CAS  Google Scholar 

  8. Wang Y, Li G, Jin J, Yang S (2017) Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int J Hydrog Energy 42(9):5938–5947

    Article  CAS  Google Scholar 

  9. Dou Y, Jin M, Zhou G et al (2015) Breath figure method for construction of honeycomb films. Membranes 5(3):399–424

    Article  CAS  Google Scholar 

  10. Zhang A, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115(18):9801–9868

    Article  CAS  Google Scholar 

  11. Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods 19(10):810–819

    Article  CAS  Google Scholar 

  12. Lee WH, Park YD (2014) Organic semiconductor/insulator polymer blends for high-performance organic transistors. Polymers 6(4):1057–1073

    Article  CAS  Google Scholar 

  13. Aitken J (1911) Breath figures. Nature 86:516–517

    Article  Google Scholar 

  14. Rayleigh L (1911) Breath figures. Nature 86(2169):416–417

    Article  Google Scholar 

  15. Rayleigh L (1912) Breath figures. Nature 90:436–438

    Article  Google Scholar 

  16. Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369(6479):387–389

    Article  CAS  Google Scholar 

  17. Srinivasarao M, Collings D, Philips A et al (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292(5514):79–83

    Article  CAS  Google Scholar 

  18. Sharma V, Song L, Jones RL et al (2010) Effect of solvent choice on breath-figure-templated assembly of “holey” polymer films. EPL (Europhys Lett) 91(3):38001

    Article  CAS  Google Scholar 

  19. Megelski S, Stephens JS, Chase DB et al (2002) Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466

    Article  CAS  Google Scholar 

  20. Casper CL, Stephens JS, Tassi NG et al (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578

    Article  CAS  Google Scholar 

  21. Brown P, Stevens K (2007) Nanofibers and nanotechnology in textiles. Woodhead Publishing, Cambridge

    Google Scholar 

  22. Jeun J, Kim Y, Lim Y et al (2007) Electrospinning of poly (L-lactide-co-D, L-lactide). J Ind Eng Chem Seoul 13(4):592

    CAS  Google Scholar 

  23. Huang L, Bui NN, Manickam SS et al (2011) Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym Sci B Polym Phys 49(24):1734–1744

    Article  CAS  Google Scholar 

  24. Demir MM (2010) Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF. Exp Polym Lett, 4 (1), pp 2–8

    Article  CAS  Google Scholar 

  25. Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72

    Article  CAS  Google Scholar 

  26. Leong MF, Chian KS, Mhaisalkar PS et al (2009) Effect of electrospun poly (D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A 89(4):1040–1048

    Article  CAS  Google Scholar 

  27. Zamani F, Amani-Tehran M, Latifi M et al (2013) The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci Mater Med 24(6):1551

    Article  CAS  Google Scholar 

  28. Lubasova D, Martinova L (2011) Controlled morphology of porous polyvinyl butyral nanofibers. J Nanomater Article ID 292516, p 6

    Google Scholar 

  29. Luo C, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51(7):1654–1662

    Article  CAS  Google Scholar 

  30. Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65(14):2291–2294

    Article  CAS  Google Scholar 

  31. Haridas AK, Sharma CS, Sritharan V et al (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197

    Article  CAS  Google Scholar 

  32. Lin J, Ding B, Yu J (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528

    Article  CAS  Google Scholar 

  33. Chen P-Y, Tung S-H (2017) One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 50(6):2528–2534

    Article  CAS  Google Scholar 

  34. Qi Z, Yu H, Chen Y, Zhu M (2009) Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater Lett 63(3):415–418

    Article  CAS  Google Scholar 

  35. Yu X, Xiang H, Long Y et al (2010) Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H 2 O. Mater Lett 64(22):2407–2409

    Article  CAS  Google Scholar 

  36. McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437

    Article  CAS  Google Scholar 

  37. Shen Z, Thompson BE, McHugh MA (2006) Electrospinning in near-critical CO2. Macromolecules 39(25):8553–8555

    Article  CAS  Google Scholar 

  38. Liu J, Shen Z, Lee S-H et al (2010) Electrospinning in compressed carbon dioxide: hollow or open-cell fiber formation with a single nozzle configuration. J Supercrit Fluids 53(1):142–150

    Article  CAS  Google Scholar 

  39. Nayani K, Katepalli H, Sharma CS et al (2011) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res 51(4):1761–1766

    Article  CAS  Google Scholar 

  40. Kim CH, Jung YH, Kim HY et al (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65

    Article  CAS  Google Scholar 

  41. Bognitzki M, Frese T, Steinhart M et al (2001) Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends. Polym Eng Sci 41(6):982–989

    Article  CAS  Google Scholar 

  42. You Y, Youk JH, Lee SW et al (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60(6):757–760

    Article  CAS  Google Scholar 

  43. Zhang Y, Feng Y, Huang Z, Ramakrishna S et al (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17(3):901

    Article  CAS  Google Scholar 

  44. Zhang L, Hsieh Y-L (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17(17):4416

    Article  CAS  Google Scholar 

  45. Gao J-F, Hu M-J, Li W et al (2014) Morphological evolution from porous nanofibers to rice like nanobeans. Mater Lett 128:110–113

    Article  CAS  Google Scholar 

  46. Kim C, Jeong YI, Ngoc BTN et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95

    Article  CAS  Google Scholar 

  47. Lee B-S, Son S-B, Park K-M et al (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6702–6710

    Article  CAS  Google Scholar 

  48. Liu H, Cao C-Y, Wei F-F et al (2014) Flexible macroporous carbon nanofiber film with high oil adsorption capacity. J Mater Chem A 2(10):3557–3562

    Article  CAS  Google Scholar 

  49. Gupta A, Saquing CD, Afshari M et al (2008) Porous nylon-6 fibers via a novel salt-induced electrospinning method. Macromolecules 42(3):709–715

    Article  CAS  Google Scholar 

  50. Ma G, Yang D, Nie J (2009) Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polym Adv Technol 20(2):147–150

    Article  CAS  Google Scholar 

  51. Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19(31):5593–5601

    Article  CAS  Google Scholar 

  52. Birajdar MS, Lee J (2015) Nanoscale bumps and dents on nanofibers enabling sonication-responsive wetting and improved moisture collection. Macromol Mater Eng 300(11):1108–1115

    Article  CAS  Google Scholar 

  53. Yousefzadeh M, Aghasilou P, Heydari M, Latifi M (2017) Photo-catalysis properties of electrospun ceramic TiO2 nanofibers with different structure and morphology. In: Proceeding of spring fiber society conference, Aachen, Germany

    Google Scholar 

  54. Standard guide for assessing microstructure of polymeric scaffolds for use in tissue engineered medical product. vol F2450- 04. ASTM

    Google Scholar 

  55. Andrady AL (2008) Science and technology of polymer nanofibers. Wiley, Hoboken

    Book  Google Scholar 

  56. Meyer K, Lorenz P, Böhl-Kuhn B et al (1994) Porous solids and their characterization methods of investigation and application. Cryst Res Technol 29(7):903–930

    Article  CAS  Google Scholar 

  57. Hang Y, Zhang Y, Jin Y et al (2012) Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int J Biol Macromol 51(5):980–986

    Article  CAS  Google Scholar 

  58. Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528

    Article  CAS  Google Scholar 

  59. Li D, Wang J, Dong X et al (2013) Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48:5930–5937

    Article  CAS  Google Scholar 

  60. Qin X (2017) Coaxial electrospinning of nanofibers. In: Afshari M (ed) Electrsopun Nanofibers. Woodhead Publishing, Cambridge, pp 41–71

    Chapter  Google Scholar 

  61. Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi, Masoud (2017) Nanofibrous and nanoparticle materials as drug-delivery systems. In: Andronescu E, Grumezescu A (eds) Nanostructures for Drug Delivery. Micro and Nano Technologies, Esevier, Amsterdam, pp 239–270

    Chapter  Google Scholar 

  62. Hadjizadeh A, Ghasemkhah F, Ghasemzaie N (2017) Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: a review. Polym Rev 57(3):505–556

    Article  CAS  Google Scholar 

  63. Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 5(16):8241–8245

    Article  CAS  Google Scholar 

  64. Yu D-G, Li X-Y, Wang X et al (2015) Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces 7(33):18891–18897

    Article  CAS  Google Scholar 

  65. Khalf A, Madihally SV (2016) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17

    Article  CAS  Google Scholar 

  66. Chan KHK, Kotaki M (2009) Fabrication and morphology control of poly (methyl methacrylate) hollow structures via coaxial electrospinning. J Appl Polym Sci 111(1):408–416

    Article  CAS  Google Scholar 

  67. Li Y, Liu J, de Bruyn JR et al (2014) Optimization of the electrospinning process for core–shell fiber preparation. J Biomater Tissue Eng 4(11):973–980

    Article  Google Scholar 

  68. Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13(2):412–421

    Article  CAS  Google Scholar 

  69. Romano L, Camposeo A, Manco R et al (2016) Core–shell electrospun fibers encapsulating chromophores or luminescent proteins for microscopically controlled molecular release. Mol Pharm 13(3):729–736

    Article  CAS  Google Scholar 

  70. Sun Z, Zussman E, Yarin AL et al (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    Article  CAS  Google Scholar 

  71. Jiang H, Hu Y, Li Y et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243

    Article  CAS  Google Scholar 

  72. Zhang Y, Huang Z-M, Xu X et al (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409

    Article  CAS  Google Scholar 

  73. Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6(97):94595–94616

    Article  CAS  Google Scholar 

  74. Lopez-Herrera J, Barrero A, Lopez A, Loscertales I et al (2003) Coaxial jets generated from electrified Taylor cones. Scaling laws. J Aerosol Sci 34(5):535–552

    Article  CAS  Google Scholar 

  75. Moghe A, Gupta B (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377

    Article  CAS  Google Scholar 

  76. Díaz JE, Fernández-Nieves A, Barrero A et al (2008) Fabrication of structured micro and nanofibers by coaxial electrospinning. J Phys Conf Ser 127:012008. IOP Publishing

    Article  CAS  Google Scholar 

  77. Loscertales IG, Barrero A, Guerrero I et al (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295(5560):1695–1698

    Article  CAS  Google Scholar 

  78. Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155

    Article  CAS  Google Scholar 

  79. Loscertales IG, Barrero A, Márquez M et al (2004) Electrically forced coaxial nanojets for one-step hollow nanofiber design. J Am Chem Soc 126(17):5376–5377

    Article  CAS  Google Scholar 

  80. Qian W, Yu D-G, Li Y, Liao Y-Z, Wang X, Wang L (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786

    Article  CAS  Google Scholar 

  81. Wang M, Jing N, Su CB et al (2006) Electrospinning of silica nanochannels for single molecule detection. Appl Phys Lett 88(3):033106

    Article  CAS  Google Scholar 

  82. Chakraborty S, Liao I-C, Adler A et al (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054

    Article  CAS  Google Scholar 

  83. Wang C, Yan K-W, Lin Y-D et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397

    Article  CAS  Google Scholar 

  84. Chen H, Wang N, Di J et al (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13):11291–11296

    Article  CAS  Google Scholar 

  85. Khalf A, Singarapu K, Madihally SV (2015) Influence of solvent characteristics in triaxial electrospun fiber formation. React Funct Polym 90:36–46

    Article  CAS  Google Scholar 

  86. Lee B-S, Yang H-S, Yu W-R (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602

    Article  CAS  Google Scholar 

  87. Zhao Y, Cao X, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129(4):764–765

    Article  CAS  Google Scholar 

  88. McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872

    Article  CAS  Google Scholar 

  89. Li F, Zhao Y, Wang S et al (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274

    Article  CAS  Google Scholar 

  90. Lee B-S, Jeon S-Y, Park H et al (2014) New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Sci Rep 4:6758

    Article  Google Scholar 

  91. Kalra V, Mendez S, Lee JH et al (2006) Confined assembly in coaxially electrospun block copolymer fibers. Adv Mater 18(24):3299–3303

    Article  CAS  Google Scholar 

  92. Kalra V, Lee JH, Park JH et al (2009) Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning. Small 5(20):2323–2332

    Article  CAS  Google Scholar 

  93. Ma M, Titievsky K, Thomas EL et al (2009) Continuous concentric lamellar block copolymer nanofibers with long range order. Nano Lett 9(4):1678–1683

    Article  CAS  Google Scholar 

  94. Lee KJ, Park T-H, Hwang S et al (2013) Janus-core and shell microfibers. Langmuir 29(20):6181–6186

    Article  CAS  Google Scholar 

  95. Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electrospinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114(49):21201–21213

    Article  CAS  Google Scholar 

  96. Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566

    Article  CAS  Google Scholar 

  97. Díaz JE, Barrero A, Márquez M et al (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater 16(16):2110–2116

    Article  CAS  Google Scholar 

  98. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938

    Article  CAS  Google Scholar 

  99. Kwak G, Lee GH, Shim S et al (2008) Fabrication of light-guiding core/sheath fibers by coaxial electrospinning. Macromol Rapid Commun 29(10):815–820

    Article  CAS  Google Scholar 

  100. Chen S, Hou H, Hu P et al (2009) Polymeric nanosprings by bicomponent electrospinning. Macromol Mater Eng 294(4):265–271

    Article  CAS  Google Scholar 

  101. Zhang H, Zhao C, Zhao Y et al (2010) Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem 53(6):1246–1254

    Article  CAS  Google Scholar 

  102. Li D, Babel A, Jenekhe SA et al (2004) Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater 16(22):2062–2066

    Article  CAS  Google Scholar 

  103. Arinstein A, Avrahami R, Zussman E (2009) Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations. J Phys D Appl Phys 42(1):015507

    Article  CAS  Google Scholar 

  104. Wei M, Kang B, Sung C et al (2006) Core-sheath structure in electrospun nanofibers from polymer blends. Macromol Mater Eng 291(11):1307–1314

    Article  CAS  Google Scholar 

  105. Vasita R, Gelain F (2013) Core-sheath fibers for regenerative medicine. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering, Wiley, Hoboken, pp 493–534

    Chapter  Google Scholar 

  106. Repanas A, Wolkers W, Gryshkov O et al (2015) Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents. Clin Exp Pharmacol 5(5):1–4

    Article  CAS  Google Scholar 

  107. Huang HH, He CL, Wang HS et al (2009) Preparation of core-shell biodegradable microfibers for long-term drug delivery. J Biomed Mater Res A 90(4):1243–1251

    Article  CAS  Google Scholar 

  108. Yan S, Xiaoqiang L, Lianjiang T et al (2009) Poly (l-lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer 50(17):4212–4219

    Article  CAS  Google Scholar 

  109. Zhang J, Choi S-W, Kim SS (2011) Micro-and nano-scale hollow TiO 2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013

    Article  CAS  Google Scholar 

  110. Larsen G, Spretz R, Velarde-Ortiz R (2004) Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions. Adv Mater 16(2):166–169

    Article  CAS  Google Scholar 

  111. Liu G, Tang Q, Yu Y et al (2014) Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL. Polym Adv Technol 25(12):1596–1603

    Article  CAS  Google Scholar 

  112. Yu D-G, Lu P, Branford-White C et al (2011) Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid. Nanotechnology 22(43):435301

    Article  CAS  Google Scholar 

  113. Dong H, Nyame V, MacDiarmid AG et al (2004) Polyaniline/poly (methyl methacrylate) coaxial fibers: the fabrication and effects of the solution properties on the morphology of electrospun core fibers. J Polym Sci B Polym Phys 42(21):3934–3942

    Article  CAS  Google Scholar 

  114. Hu Y, Huang Z-M (2007) Numerical study on two-phase flow patterns in coaxial electrospinning. J Appl Phys 101(8):084307

    Article  CAS  Google Scholar 

  115. Katti DS, Robinson KW, Ko FK et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70(2):286–296

    Article  CAS  Google Scholar 

  116. Sun B, Long Y, Zhang H et al (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890

    Article  CAS  Google Scholar 

  117. Chen X, Jia L, Yin X et al (2005) Spraying modes in coaxial jet electrospray with outer driving liquid. Phys Fluids 17(3):032101

    Article  CAS  Google Scholar 

  118. Gonçalves RP, da Silva FF, Picciani PH et al (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 6(02):189

    Google Scholar 

  119. Xia X, Wang X, Zhou H et al (2014) The effects of electrospinning parameters on coaxial Sn/C nanofibers: morphology and lithium storage performance. Electrochim Acta 121:345–351

    Article  CAS  Google Scholar 

  120. Nguyen TT, Ghosh C, Hwang S-G et al (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439(1):296–306

    Article  CAS  Google Scholar 

  121. Xu X, Yang L, Xu X et al (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 108(1):33–42

    Article  CAS  Google Scholar 

  122. Xu X, Zhuang X, Chen X et al (2006) Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 27(19):1637–1642

    Article  CAS  Google Scholar 

  123. Angeles M, Cheng HL, Velankar SS (2008) Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polym Adv Technol 19(7):728–733

    Article  CAS  Google Scholar 

  124. Xu X, Chen X, Ma PA et al (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170

    Article  CAS  Google Scholar 

  125. Viry L, Moulton SE, Romeo T et al (2012) Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem 22(22):11347–11353

    Article  CAS  Google Scholar 

  126. Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core–shell fibers using a single-nozzle technique. Langmuir 23(5):2311–2314

    Article  CAS  Google Scholar 

  127. Smolen JA (2010) Emulsion electrospinning for producing dome-shaped structures within l-tyrosine polyurethane scaffolds for gene delivery. University of Akron, Akron

    Google Scholar 

  128. Forward KM, Flores A, Rutledge GC (2013) Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci 104:250–259

    Article  CAS  Google Scholar 

  129. Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262

    Article  CAS  Google Scholar 

  130. VYSLOUŽILOVÁ L, BUZGO M, MOHROVÁ J, POKORNÝ P, BÍLEK M, PEJCHAR K, LUKÁŠ D (2012) Productivity enhancement of core/shell nanofibers. In: Nanocon, Brno, October 23 – 25, p 42, Ostrava, Czech Republic. ISBN 978-80-98294-32-1

    Google Scholar 

  131. Jiang Y, Fang D, Song G et al (2013) Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation. New J Chem 37(9):2917–2924

    Article  CAS  Google Scholar 

  132. Wang M, Fang D, Wang N et al (2014) Preparation of PVDF/PVP core–shell nanofibers mats via homogeneous electrospinning. Polymer 55(9):2188–2196

    Article  CAS  Google Scholar 

  133. Niu Q, Zeng L, Mu X et al (2016) Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem 34:337–343

    Article  CAS  Google Scholar 

  134. Yu H, Jia Y, Yao C et al (2014) PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 469(1):17–22

    Article  CAS  Google Scholar 

  135. Machmudah S, Kanda H, Okubayashi S et al (2014) Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2. Chem Eng Process Process Intensif 77:1–6

    Article  CAS  Google Scholar 

  136. Sfakis L, Sharikova A, Tuschel D et al (2017) Core/shell nanofiber characterization by Raman scanning microscopy. Biomed Opt Express 8(2):1025–1035

    Article  CAS  Google Scholar 

  137. Chen R, Huang C, Ke Q et al (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 79(2):315–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Yousefzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yousefzadeh, M., Ghasemkhah, F. (2019). Design of Porous, Core-Shell, and Hollow Nanofibers. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_9

Download citation

Publish with us

Policies and ethics