Skip to main content

Current Cord Blood Banking Concepts and Practices

  • Chapter
  • First Online:
Cord Blood Transplantations

Abstract

Umbilical cord blood (CB) is firmly established as a donor source for hematopoietic cell transplantation (HCT) and is rapidly emerging as a stem cell source for cellular and regenerative therapies. Currently, over 160 public CB banks store a worldwide inventory of over 700,000 well-characterized CB units donated for public use. Family or private banks are also available for families who elect to pay to store CB for private use. In this chapter, we briefly review the history of CB banking and transplantation. We also discuss current approaches to donor recruitment, collection, processing, and cryopreservation of CB units. We review criteria for banking as well as assays used to assess CB unit potency and quality with the aim of providing an inventory of high-quality CB units. Challenges facing the banking community including increasing regulatory requirements, the financial status of public CB banks, and future strategies for CB banking are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACOG Committee Opinion No. 648: Umbilical Cord Blood Banking (2015) Obstet Gynecol 126(6):e127–e129

    Article  Google Scholar 

  • Akel S, Lorenz J, Regan D (2013) Sterility testing of minimally manipulated cord blood products: validation of growth-based automated culture systems. Transfusion 53(12):3251–3261

    Article  PubMed  Google Scholar 

  • Allan DS et al (2016) Delayed clamping of the umbilical cord after delivery and implications for public cord blood banking. Transfusion 56(3):662–665

    Article  PubMed  Google Scholar 

  • American College of Obstetricians and Gynecologists Committee on Obstetric Practice. Committee Opinion, Delayed Umbilical Cord Clamping After Birth. Number 684, January 2017

    Google Scholar 

  • Askari S et al (2005) Impact of donor- and collection-related variables on product quality in ex utero cord blood banking. Transfusion 45(2):189–194

    Article  PubMed  Google Scholar 

  • Balber AE (2011) Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 29(4):570–575

    Article  CAS  PubMed  Google Scholar 

  • Ballen KK et al (2001) Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units. Bone Marrow Transplant 27(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Ballen KK et al (2008a) Collection and preservation of cord blood for personal use. Biol Blood Marrow Transplant 14(3):356–363

    Article  PubMed  Google Scholar 

  • Ballen KK, Verter F, Kurtzberg J (2015) Umbilical cord blood donation: public or private? Bone Marrow Transplant 50(10):1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Bart T et al (2012) Selection and Sustainability: impact on selection of the cord blood units from the United States and Swiss registries on the cost of banking operations. Transfus Med Hemother. 2013;40(1):14–20. PMID:23637645, PMCID:PMC3635979

    Google Scholar 

  • Bertolini F et al (1995) Comparative study of different procedures for the collection and banking of umbilical cord blood. J Hematother 4(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Bornstein R et al (2005) A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells 23:324–334. (1066-5099 (Print))

    Article  PubMed  Google Scholar 

  • Brand A et al (2008) Viability does not necessarily reflect the hematopoietic progenitor cell potency of a cord blood unit: results of an interlaboratory exercise. Transfusion 48(3):546–549

    Article  PubMed  Google Scholar 

  • Brocklebank AM, Sparrow RL (2001) Enumeration of CD34+ cells in cord blood: a variation on a single-platform flow cytometric method based on the ISHAGE gating strategy. Cytometry 46(4):254–261

    Google Scholar 

  • Broxmeyer HE et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci 86(10):3828–3832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broxmeyer HE et al (1991) Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 17(2):313–329

    CAS  PubMed  Google Scholar 

  • Cairo MS et al (2005) Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a cord blood transplantation (COBLT) study report. Transfusion 45(6):856–866

    Article  PubMed  Google Scholar 

  • Castillo N et al (2015) Post-thaw viable CD45+ cells and clonogenic efficiency are associated with better engraftment and outcomes after single cord blood transplantation in adult patients with malignant diseases. Biol Blood Marrow Transplant 21(12):2167–2172

    Google Scholar 

  • Clark P et al (2012) Factors affecting microbial contamination rate of cord blood collected for transplantation. Transfusion 52(8):1770–1777

    Article  PubMed  Google Scholar 

  • Cornetta K et al (2005) Umbilical cord blood transplantation in adults: results of the prospective cord blood transplantation (COBLT). Biol Blood Marrow Transplant 11(2):149–160

    Article  PubMed  Google Scholar 

  • Dauber K et al (2011) Enumeration of viable CD34+ cells by flow cytometry in blood, bone marrow and cord blood: results of a study of the novel BDâ„¢ stem cell enumeration kit. Cytotherapy 13(4):449–458

    Google Scholar 

  • Duggleby RC et al (2012) Flow cytometry assessment of apoptotic CD34+ cells by annexin V labeling may improve prediction of cord blood potency for engraftment. Transfusion 52(3):549–559

    Google Scholar 

  • Dulugiac M et al (2014) Factors which can influence the quality related to cell viability of the umbilical cord blood units. Transfus Apher Sci 51(3):90–98

    Article  PubMed  Google Scholar 

  • Dzik W, Sniecinski I, Fischer J (1999) Toward standardization of CD34+ cell enumeration: an international study. Transfusion 39(8):856–863

    Google Scholar 

  • Fallon P et al (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122(1):99–108

    Article  PubMed  Google Scholar 

  • Frandberg S et al (2015) Exploring the heterogeneity of the hematopoietic stem and progenitor cell pool in cord blood: simultaneous staining for side population, aldehyde dehydrogenase activity, and CD34 expression. Transfusion 55(6):1283–1289

    Article  PubMed  Google Scholar 

  • Frändberg S et al (2016) High quality cord blood banking is feasible with delayed clamping practices. The eight-year experience and current status of the national Swedish Cord Blood Bank. Cell Tissue Bank 17(3):439–48. PMID:27342904

    Google Scholar 

  • Fraser JK et al (1998) Cord blood transplantation study (COBLT): cord blood bank standard operating procedures. J Hematother 7(6):521–561

    Article  CAS  PubMed  Google Scholar 

  • Fry LJ et al (2013) Avoiding room temperature storage and delayed cryopreservation provide better postthaw potency in hematopoietic progenitor cell grafts. Transfusion 53(8):1834–1842

    Article  PubMed  Google Scholar 

  • Gentry T et al (2007) Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood. Cytotherapy 9(6):569–576

    Article  CAS  PubMed  Google Scholar 

  • George TJ et al (2006) Factors associated with parameters of engraftment potential of umbilical cord blood. Transfusion 46(10):1803–1812

    Article  PubMed  Google Scholar 

  • Gluckman E et al (1989) Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Gluckman E et al (2011) Family-directed umbilical cord blood banking. Haematologica 96(11):1700–1707

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodwin HS, Grunzinger LM, Regan DM, McCormick KA, Johnson CE, Oliver DA, Mueckl KA, Alonso JM 3rd, Wall DA (2003) Long term cryostorage of UC blood units: ability of the integral segment to confirm both identity and hematopoietic potential. Cytotherapy 5(1):80–86. PMID: 12745582

    Google Scholar 

  • Gutman JA et al (2011) Cord blood collection after cesarean section improves banking efficiency. Transfusion 51(9):2050–2051

    Article  PubMed  Google Scholar 

  • Guttridge MG et al (2014) Storage time affects umbilical cord blood viability. Transfusion 54(5):1278–1285

    Article  CAS  PubMed  Google Scholar 

  • Hooper SB et al (2016) The timing of umbilical cord clamping at birth: physiological considerations. Matern Health Neonatol Perinatol 2:4

    Article  PubMed Central  PubMed  Google Scholar 

  • http://www.bmdw.org

  • Jan RH et al (2008) Impact of maternal and neonatal factors on CD34+ cell count, total nucleated cells, and volume of cord blood. Pediatr Transplant 12(8):868–873

    Google Scholar 

  • Jones J (2003) Obstetric predictors of placental/umbilical cord blood volume for transplantation. Am J Obstet Gynecol 188(2):503–509

    Article  PubMed  Google Scholar 

  • Khuu HM et al (2006) Sterility testing of cell therapy products: parallel comparison of automated methods with a CFR-compliant method. Transfusion 46(12):2071–2082

    Article  PubMed  Google Scholar 

  • Kohli-Kumar M et al (1993) Haemopoietic stem/progenitor cell transplant in Fanconi anaemia using HLA-matched sibling umbilical cord blood cells. Br J Haematol 85(2):419–422

    Article  CAS  PubMed  Google Scholar 

  • Kurtzberg J et al (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335(3):157–166

    Article  CAS  PubMed  Google Scholar 

  • Kurtzberg J et al (2005) Results of the cord blood transplantation (COBLT) study unrelated donor banking program. Transfusion 45(6):842–855

    Article  PubMed  Google Scholar 

  • Kurtzberg J et al (2008) Results of the cord blood transplantation study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 112(10):4318–4327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lasky LC et al (2002) In utero or ex utero cord blood collection: which is better? Transfusion 42(10):1261–1267

    Article  PubMed  Google Scholar 

  • Lecchi L et al (2016) An update on methods for cryopreservation and thawing of hemopoietic stem cells. Transfus Apher Sci 54(3):324–336

    Article  PubMed  Google Scholar 

  • Lee HR et al (2014) Aldehyde dehydrogenase-bright cells correlated with the colony-forming unit-granulocyte-macrophage assay of thawed cord blood units. Transfusion 54(7):1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Lemarie C et al (2007) CD34(+) progenitors are reproducibly recovered in thawed umbilical grafts, and positively influence haematopoietic reconstitution after transplantation. Bone Marrow Transplant 39(8):453–460

    Google Scholar 

  • Louis I et al (2012) Impact of storage temperature and processing delays on cord blood quality: discrepancy between functional in vitro and in vivo assays. Transfusion 52(11):2401–2405

    Article  PubMed  Google Scholar 

  • Lubin BH, Shearer WT (2007) Cord blood banking for potential future transplantation. Pediatrics 119(1):165–170

    Article  PubMed  Google Scholar 

  • Magalon J et al (2015) Banking or bankrupting: strategies for sustaining the economic future of public cord blood banks. PLoS One 10(12):e0143440

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin PL et al (2006) Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant 12(2):184–194

    Article  PubMed  Google Scholar 

  • Massin F et al (2015) Validation of a single-platform method for hematopoietic CD34+ stem cells enumeration according to accreditation procedure. Biomed Mater Eng 25(1 Suppl):27–39

    Google Scholar 

  • McDonald SJ et al (2014) Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Evid Based Child Health 9(2):303–397

    Article  PubMed  Google Scholar 

  • Migliaccio AR et al (2000) Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 96(8):2717–2722

    CAS  PubMed  Google Scholar 

  • Moroff G et al (2006) Multiple-laboratory comparison of in vitro assays utilized to characterize hematopoietic cells in cord blood. Transfusion 46(4):507–515

    Article  PubMed  Google Scholar 

  • Motta JP et al (2014) Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology 68(3):343–348

    Article  PubMed  Google Scholar 

  • Page KM et al (2011a) Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single-center analysis of 435 cord blood transplants. Biol Blood Marrow Transplant 17(9):1362–1374

    Article  PubMed  Google Scholar 

  • Page KM et al (2011b) Relationships among commonly used measures of cord blood potency, ALDHbr cell content, and colony forming cell content in cord blood units prior to cryopreservation: towards an improved metric for potency of banked cord blood. Blood 118(21):4054–4054

    Google Scholar 

  • Page KM et al (2014) Optimizing donor selection for public cord blood banking: influence of maternal, infant, and collection characteristics on cord blood unit quality. Transfusion 54:340–352. p. n/a-n/a

    Article  CAS  PubMed  Google Scholar 

  • Page K et alTargeting cord blood units with higher total nucleated cell count for inclusion in a public cord blood bank: impact on inventory diversity and self-sustainability. Biol Blood Marrow Transplant 22(3):S81

    Google Scholar 

  • Pamphilon D et al (2013) Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the biomedical excellence for safer transfusion (BEST) collaborative. Cytotherapy 15(3):255–262

    Article  PubMed  Google Scholar 

  • Pereira-Cunha FG et al (2013) Viability of umbilical cord blood mononuclear cell subsets until 96 hours after collection. Transfusion 53(9):2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Prasad VK et al (2008) Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes. Blood 112(7):2979–2989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preti RA et al (2014) Multi-site evaluation of the BD stem cell enumeration kit for CD34+ cell enumeration on the BD FACSCanto II and BD FACSCalibur flow cytometers. Cytotherapy 16(11):1558–1574

    Google Scholar 

  • Purtill D et al (2013) Analysis of 402 cord blood units to assess factors influencing infused viable CD34+ cell dose: the critical determinant of engraftment. Blood 122(21):296

    Google Scholar 

  • Purtill D et al (2014) Dominant unit CD34+ cell dose predicts engraftment after double-unit cord blood transplantation and is influenced by bank practice. Blood 124(19):2905–2912

    Google Scholar 

  • Radke TF et al (2013) The assessment of parameters affecting the quality of cord blood by the appliance of the annexin V staining method and correlation with CFU assays. Stem Cells Int 2013:823912

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramirez-Arcos S et al (2015) Validation of sterility testing of cord blood: challenges and results. Transfusion 55(8):1985–1992

    Article  PubMed  Google Scholar 

  • Reiner AP et al (2011) Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet 7(6):e1002108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinstein P et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92(22):10119–10122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santos SVF et al (2016) Predictors of high-quality cord blood units. Transfusion 56:2030–2036

    Article  PubMed  Google Scholar 

  • Schwandt S et al (2016) Cord blood collection and processing with hydroxyethyl starch or non–hydroxyethyl starch. Cytotherapy 18(5):642–652

    Article  CAS  PubMed  Google Scholar 

  • Screnci M et al (2016) Sibling cord blood donor program for hematopoietic cell transplantation: the 20-year experience in the Rome Cord Blood Bank. Blood Cells Mol Dis 57:71–73

    Article  PubMed  Google Scholar 

  • Shoulars KW et al (2016) Development and validation of a rapid, aldehyde dehydrogenase bright-based, cord blood potency assay. Blood 127:2346–2354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon M et al (2010) Factors influencing cord blood viability assessment before cryopreservation. Transfusion 50(4):820–830

    Article  PubMed  Google Scholar 

  • Solves P et al (2003a) Comparison between two strategies for umbilical cord blood collection. Bone Marrow Transplant 31(4):269–273

    Article  CAS  PubMed  Google Scholar 

  • Solves P et al (2003b) Comparison between two cord blood collection strategies. Acta Obstet Gynecol Scand 82(5):439–442

    Article  CAS  PubMed  Google Scholar 

  • Solves P et al (2012) Cord blood quality after vaginal and cesarean deliveries. Transfusion 52(9):2064–2066

    Article  PubMed  Google Scholar 

  • Sun J et al (2010) Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion 50(9):1980–1987

    Article  PubMed  Google Scholar 

  • Sutherland DR et al (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5(3):213–226

    Google Scholar 

  • Sutherland DR et al (2009) Comparison of two single-platform ISHAGE-based CD34 enumeration protocols on BD FACSCalibur and FACSCanto flow cytometers. Cytotherapy 11(5):595–605

    Article  CAS  PubMed  Google Scholar 

  • Tan KK et al (2009) Ex utero harvest of hematopoietic stem cells from placenta/umbilical cord with an automated collection system. IEEE Trans Biomed Eng 56(9):2331–2334

    Article  CAS  PubMed  Google Scholar 

  • Wagner JE et al (1992) Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood 79(7):1874–1881

    CAS  PubMed  Google Scholar 

  • Wagner J et al (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346(8969):214–219

    Article  CAS  PubMed  Google Scholar 

  • Wagner JE et al (1996) Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 88(3):795–802

    CAS  PubMed  Google Scholar 

  • Wagner JE et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100(5):1611–1618

    CAS  PubMed  Google Scholar 

  • Wagner E et al (2006) Assessment of cord blood unit characteristics on the day of transplant: comparison with data issued by cord blood banks. Transfusion 46(7):1190–1198

    Article  PubMed  Google Scholar 

  • Wall DA et al (2005) Busulfan/melphalan/antithymocyte globulin followed by unrelated donor cord blood transplantation for treatment of infant leukemia and leukemia in young children: the cord blood transplantation study (COBLT) experience. Biol Blood Marrow Transplant 11(8):637–646

    Article  CAS  PubMed  Google Scholar 

  • Wu S et al (2015) Influence of maternal, infant, and collection characteristics on high-quality cord blood units in Guangzhou Cord Blood Bank. Transfusion 55(9):2158–2167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. Page MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Page, K.M., Kurtzberg, J. (2017). Current Cord Blood Banking Concepts and Practices. In: Horwitz, M., Chao, N. (eds) Cord Blood Transplantations. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-53628-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53628-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53627-9

  • Online ISBN: 978-3-319-53628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics