Skip to main content

Types and Settings of Hypogene Karst

  • Chapter
  • First Online:

Part of the book series: Cave and Karst Systems of the World ((CAKASYWO))

Abstract

This chapter discusses the notion of hypogene karst, reviews its diversity and further develops the hydrogeological approach to classifying hypogene karst and its settings. Since an understanding of hypogene karst requires much deeper and broader hydrogeological and geodynamic context as compared to more familiar epigene karst, this chapter provides an overview of basic concepts about fluid dynamics and hydrodynamic zoning of the upper crust and about the influence of the mantle processes on crustal fluids. The relationships of hypogene karstification with metasomatism and other processes of fluid-induced transformations of rocks are examined. It is argued that the phenomena of the so-called ghost-rock karstification (commonly attributed to epigene settings) and cavernous decay (commonly attributed to external weathering) are manifestations of hypogene karstification and related alteration of rocks around conduits. Genetic categorization and discrimination of characteristic settings of hypogene karst are based on consideration of driving forces and conditions for fluid circulation and ascending flow in the upper crust in the context of tectonic/geodynamic positions and history of regions. Development and distribution of hypogene karst of the artesian type in gravitational flow systems of cratons are governed by the basin’s configuration, topography and hydrostratigraphy. Hypogene karst of the endogenous type is governed by the geodynamic regimes and intimately related to cross-formational fluid-conducting systems. Hypogene karst is a significant component of fluid-induced lithogenesis and plays an important role in the porosity and permeability development in many sedimentary rocks and some metamorphic rocks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agar SM, Geiger S (eds) (2014) Fundamental controls on fluid flow in carbonates: current workflow to emerging technologies. The Geological Society of London, Special Publications, p 406

    Google Scholar 

  • Ague JJ (2003) Fluid flow in the deep crust. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 203–247

    Google Scholar 

  • Andreychouk V, Dublyansky Y, Ezhov Y, Lysenin G (2009) Karst in the Earth’s crust: its distribution and principal types. University of Silesia and Ukrainian Institute of Speleology and Karstology, Sosnowiec-Simferopol

    Google Scholar 

  • Audra P, Mocochain L, Bigot J, Nobecourt JC (2009) Hypogene cave patterns. In: Klimchouk AB, Ford DC (eds) Hypogene speleogenesis and karst hydrogeology of artesian basins. Ukrainian Institute of Speleology and Karstology, Simferopol, pp 23–32

    Google Scholar 

  • Audra P, Palmer AN (2015) Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsologica 44(3):315–348

    Article  Google Scholar 

  • Bagdasarova MV (2001) Features of fluid systems of oil and gas accumulation zones and geodynamic types of oil and gas fields. Geol Nefti i Gaza (Russia) 3:50–56 (in Russian)

    Google Scholar 

  • Bailey RC (1990) Trapping of aqueous fluids in the deep crust. Geophys Res Lett 17:1129–1132

    Article  Google Scholar 

  • Barlow PM (2003) Ground water in freshwater-saltwater environments of the Atlantic Coast. US Geological Survey, Reston, Virginia

    Google Scholar 

  • Bayari CS, Özyurt N, Pekkan E (2009) Giant collapse structures formed by hypogenic karstification: the obruks of the Central Anatolia, Turkey. In: Klimchouk AB, Ford DC (eds) Hypogene speleogenesis and karst hydrogeology of Artesian Basins, Ukrainian Institute of Speleology and Karstology, Special Paper n. 1, Simferopol, pp 83–90

    Google Scholar 

  • Beaudoin N, Bellahsen N, Lacombe O, Emmanuel L (2011) Fracture-controlled paleohydrogeology in a basement-cored, fault-related fold: Sheep Mountain Anticline, Wyoming, United States. Geochem Geophys Geosyst 12:Q06011

    Article  Google Scholar 

  • Beaudoin N, Huyghe D, Bellahsen N et al (2015) Fluid systems and fracture development during syn-depositional fold growth: an example from the Pico del Aguila anticline, Sierras Exteriores, southern Pyrenees, Spain. J Struct Geol 70:3–38

    Article  Google Scholar 

  • Bebout GE (2013) Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin Heidelberg, pp 289–349

    Chapter  Google Scholar 

  • Belenitskaya GA (2011) “Fluid” branch of lithology: state of the art, objects, and challenges. Uchenyye Zap Kazanskogo Universiteta (Russia) 153(4):97–113 (in Russian)

    Google Scholar 

  • Betzler C, Lindhorst S, Hübscher C, Lüdmann T (2011) Giant pockmarks in a carbonate platform (Maldives, Indian Ocean). Mar Geol 289:1–16. doi:10.1016/j.margeo.2011.09.004

    Article  Google Scholar 

  • Bigot JY (2010) Le karst du gypse. In: Audra P (ed) Grottes et karsts de France. Karstologia Mémoires, Association française de karstologie 19:86–87

    Google Scholar 

  • Bjørlykke K (1993) Fluid flow in sedimentary basins. Sediment Geol 86(1):137–158

    Article  Google Scholar 

  • Bjørlykke K, Mo A, Palm E (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Pet Geol 5(4):338–351

    Google Scholar 

  • Brandmeier M, Kuhlemann J, Krumrei I et al (2011) New challenges for tafoni research. A new approach to understand processes and weathering rates. Earth Surf Process Land 36(6):839–852

    Article  Google Scholar 

  • Bredehoeft JD, Back W, Hanshaw BB (1982) Regional ground-water flow concepts in the United States: historical perspective. GSA Spec Pap 189:295–316

    Google Scholar 

  • Breeding CM, Ague JJ (2002) Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand. Geology 30:499–502

    Article  Google Scholar 

  • Brod LG (1964) Artesian origin of fissure caves in Missouri. National Speleol Soc Bull 26(3):83–112

    Google Scholar 

  • Bucher K, Stober I (2010) Fluids in the upper crust. Geofluids 10:241–253

    Google Scholar 

  • Budd DA, Vacher HL (2004) Matrix permeability of the confined Floridan Aquifer, Florida, USA. Hydrogeol J 12:531–554

    Article  Google Scholar 

  • Caciagli NC, Manning CE (2003) The solubility of calcite in water at 6–16 kbar and 500–800 °C. Contrib Mineral Petrol 146:275–285

    Article  Google Scholar 

  • Cartwright J, Santamarina C (2015) Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Mar Petrol Geol 65:126–140

    Article  Google Scholar 

  • Castany G (1981) Hydrogeology of deep aquifers. The hydrogeological basin as the basis of groundwater management. Episodes 3:18–22

    Google Scholar 

  • Cathles III LM, Adams JJ (2005) Fluid flow and petroleum and mineral resources in the upper (< 20-km) continental crust. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, RJP (eds) Economic geology; one hundredth anniversary volume, 1905–2005, Society of Economic Geologists, Littleton, CO, United States, pp 77–110

    Google Scholar 

  • Chen D, Wu S, Vӧlker D, Dong D et al (2015) Tectonically induced, deep-burial paleocollapses in the Zhujiang Miocene carbonate platform in the northern South China Sea. Mar Geol 364:43–52. doi:10.1016/j.margeo.2015.03.007

    Article  Google Scholar 

  • Chilingar GV, Buryakovsky LA, Eremenko NA et al (2005) Oil and gas bearing rocks. Dev Pet Sci 52:19–38

    Google Scholar 

  • Condie KC (2001) mantle plumes and their record in Earth history. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Connolly JAD (1997) Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J Geophys Res 102:18149–18173

    Article  Google Scholar 

  • Connolly JAD (2010) The mechanics of metamorphic fluid expulsion. Elements 6:165–172

    Article  Google Scholar 

  • Connolly JAD, Podladchikov YY (2013) A hydromechanical model for lower crustal fluid flow. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin Heidelberg, pp 599–658

    Chapter  Google Scholar 

  • Crossey LJ, Fischer TP, Patchett PJ et al (2006) Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34(1):25–28

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Schmandt B et al (2016) Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth Planet Sci Lett 435(2016):22–30

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Springer A et al (2009) Degassing of mantle-derived CO2 and 3He from springs in the southern Colorado Plateau region-flux rates, neotectonics connections, and implications for understanding the groundwater system. Geol Soc Am Bull 121:1034–1053

    Article  Google Scholar 

  • Crossey LJ, Shand P, Karlstrom KE et al (2011) The mound springs of the Great Artesian Basin, Australia: origin of a long-lived linked system of CO2-rich springs and travertines. In: Abstracts of the 11th Australasian environmental isotope conference & 4th Australasian Research Conference, Cairns, 12–14 July 2011, James Cook University, p 72

    Google Scholar 

  • Cubitt JM, England WA, Larter S (eds) (2004) Understanding petroleum reservoirs: Towards an integrated reservoir engineering and geochemical approach. Geological Society, London, Special Publications vol 237

    Google Scholar 

  • Cunningham KJ, Walker C (2009) Seismic-sag structural systems in Tertiary carbonate rocks beneath southeastern Florida, USA: evidence for hypogenic speleogenesis? In: Klimchouk A, Ford D (eds) Hypogene speleogenesis and karst hydrogeology of artesian basins. Ukrainian Institute of Speleology and Karstology Special Paper 1, Simferopol, pp 151–158

    Google Scholar 

  • Davies GR, Smith LB Jr (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin 90(11):1641–1690

    Article  Google Scholar 

  • De Waele J, Audra P, Madonia G et al (2016) Sulphuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology 253:452–467

    Article  Google Scholar 

  • Deming D (1994) Fluid flow and heat transport in the upper continental crust. Geol Soc Lond Spec Publ 78:27–42

    Article  Google Scholar 

  • Deming DC (2001) Introduction to hydrogeology. McGraw-Hill ISBN, Dubuque, Iowa

    Google Scholar 

  • Djunin VI (2000) Hydrogeodynamics of deep horizons of oil-gas basins. Nauchnyy Mir, Moscow (in Russian)

    Google Scholar 

  • Djunin VI, Korzun VI (2005) Hydrogeodynamics of oil-gas basins. Nauchnyy Mir, Moscow (in Russian)

    Google Scholar 

  • Dolejs D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40

    Google Scholar 

  • Dreybrodt W, Romanov D, Kaufmann G (2009) Evolution of isolated caves in porous limestone by mixing of phreatic water and surface water at the water table of unconfined aquifers: a model approach. J Hydrol 376:200–2008

    Article  Google Scholar 

  • Dubljansky YV (2000) Hydrothermal speleogenesis in the Hungarian Karst. In: Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 298–303

    Google Scholar 

  • Dublyansky YV (2013) Karstification by geothermal waters. In: Shroder J (Editor in Chief), Frumkin A (ed) Treatise on geomorphology, vol 6 karst geomorphology. Academic Press, San Diego, pp 57–71

    Google Scholar 

  • Dubois C, Quinif Y, Baele JM et al (2014) The process of ghost-rock karstification and its role in the formation of cave systems. Earth-Sci Rev 131:116–148

    Article  Google Scholar 

  • Ernst RE and Buchan KL (eds) (2001) Mantle plumes: their identification through time. Geological Society of America Special Papers 352, Boulder, Colorado

    Google Scholar 

  • Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metamorph Geol 1:205–226

    Article  Google Scholar 

  • Ezhov YA (1978) On chemical inversion in the subterranean hydrosphere. Sovetskaja Geologiia (Soviet Geol) 12:132–136 (in Russian)

    Google Scholar 

  • Ezhov YA, Lysenin GA (1986) Vertical hydrodynamic zoning of the Earth’s crust. Sovetskaja Geologiia (Sov Geol) 8:111–120 (In Russian)

    Google Scholar 

  • Ezhov YA, Lysenin GA (1988) The significance of the zone of transitional pressures in the subterranean hydrosphere. Sovetskaja Geologiia (Sov Geol) 8:107–114 (In Russian)

    Google Scholar 

  • Ezhov YA, Lysenin GP (1990) Vertical zonation of karst development. Izvestija AN SSSR serija geologii 4:108–116 (in Russian)

    Google Scholar 

  • Ezhov YA, Vdovin YP (1970) On the hydrodynamic zoning of the Earth’s crust. Sovetskaja Geologiia (Sov Geol) 8:66–76 (In Russian)

    Google Scholar 

  • Ezhov YA, Lysenin GP, Andreychouk VN, Dublyansky VN (1992) Karst in the Earth’s crust. Sibirskoye otdeleniye Instituta geologii, Novosibirsk

    Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London

    Book  Google Scholar 

  • Fournier RO (1991) The transition from hydrostatic to greater than hydrostatic fluid pressures in presently active continental hydrothermal systems in crystalline rock. Geophys Res Lett 18:955–958

    Article  Google Scholar 

  • Frape SK, Blyth A, Blomqvist R et al (2004) Deep fluids in the continents: II. Crystalline rocks. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on geochemistry vol 5, Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 541–580

    Google Scholar 

  • Freeze RA, Witherspoon PA (1966) Theoretical analysis of regional groundwater flow. 2. Effect of water-table configuration and subsurface permeability variations. Water Resour Res 3(2):623–635

    Article  Google Scholar 

  • French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–99

    Article  Google Scholar 

  • Frost R, Bucher K (1994) Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective. Tectonophysics 231:293–309

    Article  Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth’s crust. Elsevier, Amsterdam

    Google Scholar 

  • Galloway WE, Hobday DK (1996) Depositional systems and basin hydrology. In: Galloway WE, Hobday DK (eds) Terrigenous clastic depositional systems, pp 297–326

    Google Scholar 

  • Garven G (1985) The role of regional fluid-flow in the genesis of the Pine Point deposit, western Canada sedimentary basin. Econ Geol 80:307–324

    Article  Google Scholar 

  • Gary MO, Sharp JM (2006) Volcanogenic karstification of Sistema Zacatón, Mexico. In: Harmon RS, Wicks CW (eds) Perspectives on karst geomorphology, hydrology and geochemistry, GSA Special Paper 404. Boulder, Colorado, pp 79–89

    Google Scholar 

  • Girinsky NK (1947) Some questions of groundwater dynamics. Gidrogeologija i inzhenernaja geologija (USSR) 9:27–32 (in Russian)

    Google Scholar 

  • Goudie AS, Viles HA (1997) Tafoni, alveoles, honeycombs, and overhangs, in salt weathering hazards. Wiley, New York

    Google Scholar 

  • Groom KM, Allen CD, Mol L et al (2015) Defining tafoni: re-examining terminological ambiguity for cavernous rock decay phenomena. Prog Phys Geogr 39(6):775–793

    Article  Google Scholar 

  • Hanor JS (1987) Origin and migration of subsurface sedimentary brines. SEPM short course lecture notes 21, Society of Economic Paleontologists and Mineralogis, Tulsa

    Google Scholar 

  • Hantush MS, Jacob CE (1954) Plane potential flow of ground water with linear leakage. EOS Trans AGU 35(6):917–936. doi:10.1029/TR035i006p00917

    Article  Google Scholar 

  • Hantush MS, Jacob CE (1955) Nonsteady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36:95–100

    Article  Google Scholar 

  • Harlov DE, Austrheim H (eds) (2013) Metasomatism and the chemical transformation of rock. Springer, Berlin-Heidelberg

    Google Scholar 

  • Hiscock KM, Bense VF (2014) Hydrogeology: principles and practice, 2nd edn. Wiley, New York

    Google Scholar 

  • Hitchon B (1969) Fluid flow in western Canada sedimentary basin 1. Effect of topography. Water Resour Res 5:186–195

    Article  Google Scholar 

  • Hovland M (2003) Geomorphological, geophysical, and geochemical evidence of fluid flow through the seabed. J Geochem Explor 78:287–291

    Article  Google Scholar 

  • Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2(2):127–136

    Article  Google Scholar 

  • Hughes JD, Vacher HL, Sanford WE (2007) Three-dimensional flow in the Florida platform: theoretical analysis of Kohout convection at its type locality. Geology 35(7):663–666

    Article  Google Scholar 

  • Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers? In: El-Kadi A (ed) Groundwater models for resources analysis and management. Lewis Publishers, Boca Raton, pp 339–358

    Google Scholar 

  • Ignatovich NK (1950) Zoning, formation and activity of groundwater in relation with geostructures development. In: Voprosy gidrogeologii I inzhenernoy geologii [Questioins of hydrogeology and engineering geology] vol 13, Izdatelstvo MGU, Moscow, pp 6–22 (in Russian)

    Google Scholar 

  • Ingebritsen SE, Appold MS (2012) The physical hydrogeology of ore deposits. Econ Geol 107(4):559–584

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2003) Implications of crustal permeability for fluid movement between terrestrial fluid reservoirs. J Geochem Explor 78–79:1–6

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10(1–2):193–205

    Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Italiano F, Yuce G, Uysal IT, Gasparon M, Morelli G (2013) Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia. Chem Geol 378–379:75–88. doi:10.1016/j.chemgeo.2014.04.013

    Google Scholar 

  • Ivanov SN (1966) Singularities of hydrothermal ore formation beneath the continental surface and sea. Doklady AN SSSR 169(1):177–180 (in Russian)

    Google Scholar 

  • Ivanov SN (1970) Maximum depth of open fractures and hydrodynamic zoning of the Earth’s crust. In: Exhegodnik Instituta geol. geochim. Uralskogo filiala AN SSSR, Sverdlovsk, pp 212–233 (in Russian)

    Google Scholar 

  • Ivanov SN, Ivanov KS (1993) Hydrodynamic zoning of the Earth’s crust and its significance. J Geodyn 17(4):155–180

    Article  Google Scholar 

  • Jones GD, Xiao Y (2006) Geothermal convection in the Tengiz carbonate platform, Kazakhstan: reactive transport models of diagenesis and reservoir quality. AAPG Bull 90(8):1251–1272

    Article  Google Scholar 

  • Karlstrom KE, Crossey LJ, Hilton DR, Barry PH (2013) Mantle 3He and CO2 degassing in carbonic and geothermal springs of Colorado and implications for neotectonics of the Rocky Mountains. Geology 41(4):495–498

    Article  Google Scholar 

  • Kartsev AA, Vagin SB, Baskov EA (1969) Paleohydrogeology. Nedra, Moscow (in Russian)

    Google Scholar 

  • Kennedy BM, Van Soest MC (2007) Flow of mantle fluids through the ductile lower crust: Helium isotope trends. Science 318(5855):1433–1436

    Article  Google Scholar 

  • Kharaka YK, Hanor JS (2004) Deep fluids in the continents: I. sedimentary basins. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on geochemistry vol 5, Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 499–540

    Google Scholar 

  • Kirkinskaya VN, Smekhov EM (1981) Carbonate rocks—reservoirs of oil and gas. Nedra, Leningrad (in Russian)

    Google Scholar 

  • Kissin IG (1967) Hydrodynamic anomalies in the underground hydrosphere. Nauka, Moscow

    Google Scholar 

  • Kissin IG (1985) Hydrodynamic regime and geological cycle of water in the Earth’s crust. In: Underground waters and evolution of the lithosphere vol. 2, Nauka, Moscow, pp 31–35 (in Russian)

    Google Scholar 

  • Kissin IG (2009) Fluids in the Earth’s crust: geophysical and tectonic aspects. Nauka, Moscow (in Russian)

    Google Scholar 

  • Klimchouk AB (2007) Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. National Cave and Karst Research Institute, Special Paper No. 1, Carlsbad, New Mexico. 106 pp

    Google Scholar 

  • Klimchouk A (2012) Speleogenesis, hypogenic. In: Culver DC, White BW (eds) Encyclopedia of caves, 2nd edn. Elsevier, Chennai, pp 748–765

    Chapter  Google Scholar 

  • Klimchouk AB (2013a) Hypogene speleogenesis. In: Shroder J (Editor in Chief), Frumkin A (ed) Treatise on geomorphology, vol 6 karst geomorphology. Academic Press, San Diego, pp 220–240

    Google Scholar 

  • Klimchouk AB (2013b) Hypogene speleogenesis, its hydrogeological significance and the role in evolution of karst. DIP, Simferopol (in Russian)

    Google Scholar 

  • Klimchouk AB (2013c) Hydrogeological approach to distinguishing hypogene speleogenesis settings. In: International symposium on hierarchical flow systems in Karst Regions, Book of Abstracts, Sep. 2013, Budapest, Hungary, pp 94

    Google Scholar 

  • Klimchouk A (2014) The methodological strength of the hydrological approach to distinguishing hypogene speleogenesis. In: Klimchouk A, Sasowsky ID, Mylroie JE et al (eds) Hypogene karst morphologies, Karst Waters Institute Special Publication 18, pp 4–12

    Google Scholar 

  • Klimchouk A (2015) The karst paradigm: changes, trends and perspectives. Acta Carsologica 44(3):289–313

    Google Scholar 

  • Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) (2000) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville (AL), p 527

    Google Scholar 

  • Klimchouk AB, Pronin KK, Timokhina EI (2010) Speleogenesis in the Pontian limestones of Odessa. Speleol Karstology (Ukraine) 5:76–93 (in Russian)

    Google Scholar 

  • Klimchouk AB, Tymokhina EI, Amelichev GN et al (2013) Hypogene karst of the Crimean Piedmont and its geomorphological role. DIP, Simferopol (in Russian)

    Google Scholar 

  • Kohout FA, Henry HR, Banks JE (1977) Hydrology related to geothermal conditions of the Floridan Plateau. In: Smith KL, Griffin GM (eds) The geothermal nature of the Floridan Plateau, Florida Department of Natural Resources Bureau of Geology Special Publication 21, pp 1–34

    Google Scholar 

  • Korzhinskii DS (1953) Infiltration metasomatism at the presence of temperature gradient and contact metasomatic leaching. Zapiski Vses Mineral Obshch (Russia) 282:161–172 (in Russian)

    Google Scholar 

  • Korzhinskiy DS (1957) Physico-chemical basement of the mineral parageneses analysis. Nauka, Moscow (In Russian)

    Google Scholar 

  • Krause RE, Randolph RB (1989) Hydrology of the Floridan aquifer system in southeast Georgia and adjacent parts of Florida and South Carolina. U.S. Geological Survey Professional Paper 1403-D, USGS, Reston, VA (US)

    Google Scholar 

  • Kropotkin PN (1986) Degassing of Earth and the origin of hydrocarbons. Zjurnal Vsesojuznogo Khimicheskogo Obshchestva (USSR) 31(5):481–587 (in Russian)

    Google Scholar 

  • Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater Basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69(15):3857–3872

    Article  Google Scholar 

  • Kyser K, Hiatt EE (2003) Fluids in sedimentary basins: an introduction. J Geochem Explor 80:139–149

    Article  Google Scholar 

  • Land L, Huff GF (2010) Multi-tracer investigation of groundwater residence time in a karstic aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA. Hydrogeol J 18:455–472

    Article  Google Scholar 

  • Land LA (2003) Evaporite karst and regional ground water circulation in the lower Pecos Valley. In: Johnson KS, Neal JT (eds) Evaporite Karst and engineering/environmental problems in the United States, Oklahoma Geological Survey Circular 109. Norman, Oklahoma Geological Survey, pp 227–232

    Google Scholar 

  • Larson RL (1991) Geological consequences of superplumes. Geology 19(10):963–966

    Article  Google Scholar 

  • Letnikov FA (1992) Super-deep fluid systems of Earth. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Letnikov FA (2001) Super-deep fluid systems of Earth and problems of ore formation. Geologiya rudnych mestorozhdeniy 43(4):291–307 (in Russian)

    Google Scholar 

  • Letnikov FA, Dorogokupets PI (2001) To the question of the role of super-deep fluid systems of the Earth’s core in endogenous geological processes. Doklady NAN 378(4):535–537 (in Russian)

    Google Scholar 

  • Liebscher A (2010) Aqueous fluids at elevated pressure and temperature. Geofluids 10(1–2):3–19

    Article  Google Scholar 

  • Lindgren W (1925) Metasomatism. GSA Bulletin 36(1):247–262

    Article  Google Scholar 

  • Llamas MR, Cruces de Abia J (1978) Conceptual and digital models of the ground water flow in the Tertiary basin of the Tagus River (Spain). In: Proceedings of the international hydrogeological conference, Budapest, pp 186–202

    Google Scholar 

  • Lukin AE (2014) Fluid-induced lithogenesis—the most important direction of lithological research in XXI century. Geologichnyy Zhurnal (Ukraine) 4:27–42 (in Russian)

    Google Scholar 

  • Lukin AE (2015) The system “superplume—deep-seated segments of petroliferous basins”—an inexhaustible source of hydrocarbons. Geologichnyy Zhurnal (Ukraine) 2:7–20 (in Russian)

    Google Scholar 

  • Malyshev AE (2011) Gas factor in endogenous processes. Ekaterinburg (in Russian)

    Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150

    Article  Google Scholar 

  • Martini IP (1978) Tafoni weathering, with examples from Tuscany, Italy. Zeitschrift fur Geomorphol 22(1):44–67

    Google Scholar 

  • Maruyama S, Yuen DA, Windley BF (2007) Dynamics of plumes and superplumes through time. In: Yuen A, Naruyama S, Karato S-I et al (eds) Superplumes: beyond plate tectonics. Springer, New York

    Google Scholar 

  • McBride EF, Picard MD (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno sandstone, Tuscan coast near Livorno, Italy. Earth Surf Process Land 29:713–735. doi:10.1002/esp.1065

    Article  Google Scholar 

  • McCartney RA, Winefield P, Webb P, Kuhn O (2004) Spatial variations in the composition of formation waters from the central North Sea: implications for fluid flow in the deep high-pressure high-temperature hydrocarbon play. In: Cubitt JM, England WA and Larter S (eds) Understanding petroleum reservoirs: towards an integrated reservoir engineering and geochemical approach. Geological Society, London, Special Publications 237, pp 283–303

    Google Scholar 

  • Michaud F, Chabert A, Collot J-Y et al (2005) Fields of multi-kilometer scale sub-circular depressions in the Carnegie Ridge sedimentary blanket. Mar Geol 216(4):205–219. doi:10.1016/j.margeo.2005.01.003

    Article  Google Scholar 

  • Mjatiev AN (1947) Confined complex of underground waters and wells. Izvestija AN SSSR otd. tekhnich. nauk 9:33–47 (in Russian)

    Google Scholar 

  • Mukhin YV (1965) Processes of compaction of clay sediments. Nedra, Moscow (in Russian)

    Google Scholar 

  • Murakami M, Hirose K, Yurimoto H et al (2002) Water in Earth’s lower mantle. Science 295:1885–1887

    Article  Google Scholar 

  • Mustoe GE (1983) Origin of honeycomb weathering. GSA Bulletin 93:108–115

    Article  Google Scholar 

  • Mylroie JE, Carew JL (1990) The flank margin model for dissolution cave development in carbonate platforms. Earth Surf Process Land 15:413–424

    Article  Google Scholar 

  • Mylroie JE, Carew JL (1995) Karst development on carbonate islands. In: Budd DA, Harris PM, Saller A (eds) Unconformities and porosity in carbonate strata. AAPG Memoir 63:55 − 76

    Google Scholar 

  • Newell DL, Crossey LJ, Karlstrom KE et al (2005) Continental-scale links between the mantle and groundwater systems of the western United States: evidence from travertine springs and regional He data. GSA Today 15(12):4–10

    Article  Google Scholar 

  • Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409

    Article  Google Scholar 

  • Newton RC, Manning CE (2005) Solubility of anhydrite, CaSO4, in NaCl–H2O solutions at high pressures and temperatures: applications to fluid–rock interaction. J Petrology 46(4):701–716

    Article  Google Scholar 

  • Northup DE, Dahm CN, Melim LA et al (2000) Evidence for geomicrobiological interactions in Guadalupe caves. J Cave Karst Studies 62(2):80–90

    Google Scholar 

  • Oppenheimer C, Fischer TP, Scaillet B (2014) Volcanic degassing: process and impact. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, vol 4, 2nd edn., The CrustElsevier-Pergamon, Oxford, pp 111–179

    Chapter  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. GSA Bulletin 103:1–21

    Article  Google Scholar 

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Ford D, Palmer A, Dreybrodt W (eds) Klimchouk A. Evolution of Karst Aquifers, National Speleological Society, Huntsville (AL), Speleogenesis, pp 77–90

    Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton

    Google Scholar 

  • Palmer AN (2013) Sulfuric acid caves: morphology and evolution. In: Shroder J (Editor in Chief), Frumkin A (ed) Treatise on geomorphology, vol 6 karst geomorphology. Academic Press, San Diego, pp 241–257

    Google Scholar 

  • Paradise TR (2013) Tafoni and other rock basins. In: Shroder J (ed) Treatise on geomorphology. Academic Press, San Diego, pp 111–126

    Chapter  Google Scholar 

  • Phillips OM (1991) Flow and Reactions in permeable rocks. Cambridge University Press, Cambridge

    Google Scholar 

  • Pinneker EV (1977) Problems of regional hydrogeology: regularities of distribution and formation of groundwaters. Nauka, Novosibirsk

    Google Scholar 

  • Pinekker EV (ed) (1980) Principles of hydrogeology. General Hydrogeology, Nauka Siberian Branch, Novosibirsk, p 231

    Google Scholar 

  • Pinneker EV (1983) General hydrogeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Poage MC, Chamberlain CP, Craw D (2000) Massif-wide metamorphism and fluid evolution at Nanga Parbat, northern Pakistan. Am J Sci 300:463–482

    Article  Google Scholar 

  • Pospelov GL (1973) Paradoxes, physicochemical nature and mechanisms of metasomatism. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Quinif Y, Bruxelles L (2011) L’altération de type “fantôme de roche”: processus, évolution et implications pour la karstification. Géomorphologie 4:349–358

    Article  Google Scholar 

  • Rodriguez-Navarro C (1998) Evidence of honeycomb weathering on Mars. Geophys Res Lett 25(17):3249–3252

    Article  Google Scholar 

  • Rubenach M (2013) Structural controls of metasomatism on a regional scale. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin Heidelberg, pp 93–140

    Chapter  Google Scholar 

  • Schmandt B, Jacobsen SD, Becker TW et al (2014) Dehydration melting at the top of the lower mantle. Science 344(6189):1265–1268

    Article  Google Scholar 

  • Schmidt MW, Poli S (2014) Devolatilization during subduction. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, vol 4, 2nd edn., The CrustElsevier-Pergamon, Oxford, pp 669–701

    Chapter  Google Scholar 

  • Schmidt VA (1974) The paleohydrology of Laurel Caverns, Pennsylvania. In: Proceedings of the 4th conference on karst geology and hydrology, Morgantown, W.Va, West Virginia Geological and Economic Survey, pp 123–128

    Google Scholar 

  • Shepherd M (2009) Oil field production geology. AAPG Memoir 91

    Google Scholar 

  • Sherwood-Lollar B, Ballentine CJ, O’Nions RK (1997) The fate of mantle-derived carbon in a continental sedimentary basin: integration of C/He relationships and stable isotopic signatures. Geochim Cosmochim Acta 61(11):2295–2307

    Article  Google Scholar 

  • Shestopalov VM (1981) Natural resources of underground water of platform artesian basins of Ukraine. Naukova Dumka, Kiev (In Russian)

    Google Scholar 

  • Shestopalov VM (1988) Methods of study of underground water natural resources. Nedra, Moscow (in Russian)

    Google Scholar 

  • Shestopalov VM (2014) On hydrodynamic zoning and water exchange in hydrogeologic structures. Geologichesky Zhurnal 4(349):9–26 (In Russian)

    Google Scholar 

  • Shestopalov VM (ed) (1989) Water exchange in hydrogeological structures of Ukraine. Water exchange under natural conditions, Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Shmulovich KI, Yardley BWD, Gontchar GG (1994) Fluids in the crust. Chapman & Hall, London

    Google Scholar 

  • Shvartzev SL (1996) General hydrogeology. Nedra, Moscow (in Russian)

    Google Scholar 

  • Sibson RH, Moore JMM, Rankin AH (1975) Seismic pumping—a hydrothermal fluid transport mechanism. J Geol Soc 131(6):653–659

    Article  Google Scholar 

  • Sokolov DS (1962) Principal conditions of karst development. Gosgeoltehizdat, Moscow (in Russian)

    Google Scholar 

  • Spechler RM (1994) Saltwater Intrusion and quality of water in the Floridan aquifer system, northeastern Florida. U.S. Geological survey Water-Resources Investigations Report 92-4174, USGS, Tallahassee, Florida

    Google Scholar 

  • Spilde MN, Boston PJ, Northup DE (2003) Subterranean soil development. J Cave Karst Stud 65(3):188

    Google Scholar 

  • Spilde MN, Kooser A, Boston PJ at al (2009) Speleosol: a subterranean soil. In: Proceedings of the 15th international congress of speleology, Kerrville, Texas, pp 338–344

    Google Scholar 

  • Stober I, Bucher L (2004) Fluid sinks within the Earth’s crust. Geofluids 4:143–151

    Article  Google Scholar 

  • Templeton AS, Chamberlain CP, Koons PO et al (1998) Stable isotopic evidence for mixing between metamorphic fluids and surface-derived waters during recent uplift of the southern Alps, New Zealand. Earth Planet Sci Lett 154:73–92

    Article  Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–15

    Article  Google Scholar 

  • Tóth J (2009) Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Turkington AV (2004) Cavernous weathering. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 1. Routledge, London, pp 128–130

    Google Scholar 

  • Turkington AV, Phillips JD (2004) Cavernous weathering, dynamical instability and self-organization. Earth Surf Process Land 29:665–675

    Article  Google Scholar 

  • Turkington AV, Paradise TR (2005) Sandstone weathering: a century of research and innovation. Geomorphology 67(1):229–253

    Article  Google Scholar 

  • Uma KO, Mosto Onuoha K (1997) Hydrodynamic flow and formation pressures in the Anambra basin, southern Nigeria. Hydrol Sci J 42(2):141–154

    Article  Google Scholar 

  • Unsworth M, Rondenay S (2013) Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer-Verlag, Berlin Heidelberg, pp 535–598

    Chapter  Google Scholar 

  • Vakhrushev BA (2009) Singularities of hypogene speleogenesis of the mountain-folded region of Western Caucasus. In: Klimchouk AB, Ford DC (eds) Hypogene speleogenesis and karst hydrogeology of Artesian Basins Special Paper 1. Ukrainian Institute of Speleology and Karstology, Simferopol, pp 271–276 (in Russian)

    Google Scholar 

  • Vartanyan GS (1977) Deposits of carbonated waters of mountain folded regions. Nedra, Moscow (in Russian)

    Google Scholar 

  • Vergari A (1998) Nouveau regard sur la spéléogénèse: le “pseudo-endokarst” du Tournaisis (Hainaut, Belgique). Karstologia 31:12–18

    Google Scholar 

  • Vergari A, Quinif Y (1997) Les paléokarsts du Hainaut (Belgique). Geodin Acta 10(4):175–187

    Article  Google Scholar 

  • Viles H (2005) Self-organized or disorganized? Towards a general explanation of cavernous weathering. Earth Surf Process Land 30:1471–1473

    Article  Google Scholar 

  • Vsevolozhskiy VA (1983) Groundwater flow and water balance of platform structures. Nedra, Moscow (in Russian)

    Google Scholar 

  • Vsevolozhskiy VA (2007) Principles of hydrogeology. Moscow University Publ, Moscow (in Russian)

    Google Scholar 

  • Vsevologhskiy VA, Dyunin VI (1996) Analysis of hydrodynamics regularities of deep stratal aquifer systems. Vestnik MGU Serija geol. 3:61–72 (in Russian)

    Google Scholar 

  • Vsevolozhskiy VA, Kireeva TA (2009) On the problem of the formation of inversions in hydrochemical zoning. Vestnik MGU seriya Geologiya (Russia) 5:19–25 (in Russian)

    Google Scholar 

  • Vsevolozhskiy VA, Kireeva TA (2014) The role of endogenous fluids in the formation of vertical hydrogeological zoning of oil-gas-bearing basins of the platform type. Glubinnaja Neft (Deep Oil) 1, [http://journal.deepoil.ru/index] (in Russian)

  • Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth-Sci Rev 52(1):1–81

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Webb JA, Grimes KG, Lewis ID (2010) Volcanogenic origin of cenotes near Mt Gambier, southeastern Australia. Geomorphology 119(1):23–35

    Article  Google Scholar 

  • Weinlich FN, Tesar J, Weise SM et al (1998) Gas flux distribution in mineral springs and tectonic structures in the western Eger Rift. J Czech Geol Soc 43(1–2):91–110

    Google Scholar 

  • Wing BA, Ferry JM (2002) Three-dimensional geometry of metamorphic fluid flow during Barrovian regional metamorphism from an inversion of combined petrologic and stable isotopic data. Geology 30:639–643

    Article  Google Scholar 

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336

    Article  Google Scholar 

  • Xu S, Nakai SI, Wakita H et al (1995) Helium isotope compositions in sedimentary basins in China. Appl Geochem 10(6):643–656

    Article  Google Scholar 

  • Yardley BWD (2013) The chemical composition of metasomatic fluids in the crust. In: Harlow DE, Austrheim H (eds) metasomatism and the chemical transformation of rock the role of fluids in terrestrial and extraterrestrial processes. Springer-Verlag, Berlin Heidelberg, pp 17–52

    Chapter  Google Scholar 

  • Yardley BW, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3(1):1–2

    Google Scholar 

  • Young R, Young A (1992) Sandstone landforms, 11. Springer series in physical environment. Springer, Heidelberg-Berlin

    Google Scholar 

  • Yuen A, Naruyama S, Karato S-I et al (eds) (2007) Superplumes: beyond plate tectonics. Springer, New York

    Google Scholar 

  • Zharikov V, Pertsev N, Rusinov V et al (2007) Metasomatism and metasomatic rocks. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, pp 58–68

    Google Scholar 

  • Zharikov VA, Rusinov VL, Marakushev AA et al (1998) Metasomatism and metasomatic rocks. Nauchnyy Mir, Moscow (in Russian)

    Google Scholar 

  • Zverev VP (1999) Mass flows of the underground hydrosphere. Nauka, Moscow, pp 96 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Klimchouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klimchouk, A. (2017). Types and Settings of Hypogene Karst. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_1

Download citation

Publish with us

Policies and ethics