Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The understanding of nature has been radically changed by the advent of quantum mechanics and general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More technically: what foliation of space-time into space like hypersurfaces one considers.

  2. 2.

    While to describe internal states of the Caesium atoms, or modern high-precision atomic clocks [29] quantum theory is unquestionably required, time dilation measured with the use of such clocks depends on their centre of mass—which in all to-date experiments was consistent with a classical description.

References

  1. J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  2. J. Bell, SpeakabLe and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, 2004)

    Google Scholar 

  3. R.A. Bertlmann, A. Zeilinger, Quantum (un) Speakables: from Bell to Quantum Information (Springer Science and Business Media, 2013)

    Google Scholar 

  4. A. Einstein, The foundation of the general theory of relativity. Ann. Phys. 40, 284–337 (1916)

    Google Scholar 

  5. S.M. Carroll, Spacetime and Geometry. An Introduction to General Relativity, vol 1 (Addison-Wesley, 2004)

    Google Scholar 

  6. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, 1973)

    Google Scholar 

  7. S. Weinberg, Gravitation and Cosmology: Principle and Applications of General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  8. A. Einstein, L. Infeld, The Evolution of Physics: the Growth of Ideas from Early Concepts to Relativity and Quanta (An Essandess paperback, Simon and Schuster, 1961)

    MATH  Google Scholar 

  9. H. Brown, Physical Relativity:space-time Structure from a Dynamical Perspective: Space-time Structure from a Dynamical Perspective, Oxford Scholarship Online. PhiloSophy Module (Clarendon Press, 2005)

    Google Scholar 

  10. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics. Quantum Mechanics, vol 3 (Addison-Wesley, Inc., Reading, Mass.-London, 1965q)

    Google Scholar 

  11. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  12. D. Bohm, Quantum Theory (Courier Corporation, 1951)

    Google Scholar 

  13. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  14. S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    Article  ADS  Google Scholar 

  15. A. Aspect, P. Grangier, G. Roger, Experimental test of local hidden-variable theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  16. B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  17. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  18. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Strong loophole-free test of local realism*. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  19. B. Dakic Č. Brukner, Quantum Theory and Beyond: Is Entanglement Special?, in Deep Beauty—Understanding the Quantum World through Mathematical Innovation, ed. by H. Halvorson, (American Institute of Physics, 2011) pp. 365–392

    Google Scholar 

  20. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. (Cambridge University Press, New York, NY, USA, 2011)

    MATH  Google Scholar 

  21. H. Dingle, The case against special relativity. Nature 216, 119–122 (1967)

    Article  ADS  Google Scholar 

  22. W.H. McCrea, Why the special theory of relativity is correct. Nature 216, 122–124 (1967)

    Article  ADS  Google Scholar 

  23. F.J.M. Farley, Is the special theory right or wrong?: experimental verifications of the theory of relativity. Nature 217, 17–18 (1968)

    Article  ADS  Google Scholar 

  24. J. Terrell, R.K. Adair, R.W. Williams, F.C. Michel, D.A. Ljung, D. Greenberger, J.P. Matthesen, V. Korenman, T.W. Noonan, R. Price, V. Sandberg, P.H. Polak, S.R. de Groot, G. Lüders, J. G. Fletcher, M. Sachs, Atom interferometers and the gravitational redshift. Phys. Today 25, 9 (1972)

    Google Scholar 

  25. D.M. Greenberger, The reality of the twin paradox effect. Am. J. Phys. 40, 750–754 (1972)

    Article  ADS  Google Scholar 

  26. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166–168 (1972)

    Article  ADS  Google Scholar 

  27. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: Observed relativistic time gains. Science 177, 168–170 (1972)

    Article  ADS  Google Scholar 

  28. C.-W. Chou, D. Hume, T. Rosenband, D. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  ADS  Google Scholar 

  29. T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, J. Ye, Systematic evaluation of an atomic clock at 2\(\times 10^{-18}\) total uncertainty. Nat. Comm. 6, 6896 (2015)

    Article  ADS  Google Scholar 

  30. S. Weinberg, The Quantum Theory of Fields, vol. 2 (Cambridge University Press, 1996)

    Google Scholar 

  31. D. Colosi, C. Rovelli, What is a particle? Class. Quantum Gravity 47, 245–252 (2009)

    MathSciNet  MATH  Google Scholar 

  32. S.W. Hawking, Black hole explosions. Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  33. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, arXiv:1409.1231 [hep-th]

  35. S.D. Mathur, The information paradox: a pedagogical introduction. Class. Quantum Gravity 26, 224001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. C. Kiefer, Quantum Gravity (General) and Applications (Springer, Berlin Heidelberg, 2009)

    Book  Google Scholar 

  37. K. Konno, M. Kasai, General relativistic effects of gravity in quantum mechanics: a case of ultrarelativistic, spin 1/2 particles. Progress Theoret. Phys. 100, 1145–1157 (1998)

    Article  ADS  Google Scholar 

  38. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008)

    Article  ADS  Google Scholar 

  39. C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014), arXiv:1403.7377 [bibgr-qc]

  40. R. Colella, A. Overhauser, S. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  41. S. Chu, Nobel lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998)

    Article  ADS  Google Scholar 

  42. A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)

    Article  ADS  Google Scholar 

  43. S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)

    Article  ADS  Google Scholar 

  44. H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.-Y. Chung, Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100, 031101 (2008)

    Article  ADS  Google Scholar 

  45. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. Tino, Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014)

    Article  ADS  Google Scholar 

  46. G.M. Tino, Testing gravity with atom interferometry, in Proceedings of the International School of Physics—Enrico Fermi, eds. by G.M. Tino, M.A. Kasevich (2014) pp. 457–493

    Google Scholar 

  47. V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baeßler, F.J. Rueß, T. Stöferle, A. Westphal, A.M. Gagarski, G.A. Petrov et al., Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)

    Article  ADS  Google Scholar 

  48. T. Jenke, P. Geltenbort, H. Lemmel, H. Abele, Realization of a gravity-resonance-spectroscopy technique. Nature Phys. 7, 468–472 (2011)

    Article  ADS  Google Scholar 

  49. R. Pound, G. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)

    Article  ADS  Google Scholar 

  50. I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  51. I.I. Shapiro, M.E. Ash, R.P. Ingalls, W.B. Smith, D.B. Campbell, R.B. Dyce, R.F. Jurgens, G.H. Pettengill, Fourth test of general relativity: new radar result. Phys. Rev. Lett. 26, 1132–1135 (1971)

    Article  ADS  Google Scholar 

  52. R.B. Mann, T.C. Ralph, Relativistic quantum information. Class. Quantum Gravity 29 (2012)

    Google Scholar 

  53. D. Rideout, T. Jennewein, G. Amelino-Camelia, T.F. Demarie, B.L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R.B. Mann et al., Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quantum Gravity 29, 224011 (2012)

    Article  ADS  Google Scholar 

  54. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  55. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. L. Diósi, Intrinsic time-uncertainties and decoherence: comparison of 4 models. Braz. J. Phys. 35, 260–265 (2005)

    Article  ADS  Google Scholar 

  57. P.C.E. Stamp, Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 370, 4429–4453 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zych .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zych, M. (2017). Introduction. In: Quantum Systems under Gravitational Time Dilation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-53192-2_1

Download citation

Publish with us

Policies and ethics