Skip to main content

General Interface Integral Equations in Elasticity of Random Structure Composites

  • Chapter
  • First Online:
Micromechanics and Nanomechanics of Composite Solids

Abstract

One considers linearly elastic composite media, which consist of a homogeneous matrix containing a statistically homogeneous random set of aligned homogeneous heterogeneities of a noncanonical shape. The new general integral equations connecting the stress and strain fields in the point being considered with the stress and strain fields in the surrounding points are obtained for the random fields of heterogeneities. The method is based on a recently developed centering procedure where the notion of a perturbator is introduced in terms of boundary interface integrals that makes it possible to reconsider basic concepts of micromechanics such as effective field hypothesis, quasi-crystalline approximation, and the hypothesis of “ellipsoidal symmetry.” The results of this reconsideration are quantitatively estimated for some modeled composite reinforced by aligned homogeneous heterogeneities of a noncanonical shape. Some new effects are detected that are impossible in the framework of a classical background of micromechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is known that for 2-D problems the plane-strain state is only possible for material symmetry no lower than orthotropic (see, e.g., Lekhnitskii 1963) that will be assumed hereafter in 2-D case.

  2. 2.

    Exponential decreasing of this function was obtained by Willis (1978) for spherical inclusions; Hansen and McDonald (1986), Torquato and Lado (1992) proposed a faster decreasing function for aligned fibers of circular cross-section.

References

  • ABAQUS: Theory Manual for Version 6.2-1, Pawtucket, RI: Hibbitt, Karlsson, and Sorenson, Inc. (2001)

    Google Scholar 

  • Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Alves, C.J.S.,Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simplyconnected shapes. Comput. Mater. Continua 2, 251–66 (2005)

    Google Scholar 

  • Alves, C.J.S., Silvestre, A.L.: Density results using Stokesltes and a method of fundamental solutions for the Stokes equations. Eng. Anal. Bound. Elem. 28, 1245–1252 (2004)

    Article  MATH  Google Scholar 

  • Atluri, S.N.: The Meshless Method (MLPG) for Domain & BIE Discretizations. Tech Science Press, Encino, CA (2004)

    Google Scholar 

  • Balas, J., Sladek, J., Sladek, V.: Stress Analysis by Boundary Element Methods. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless method: An overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  • Benveniste, Y.: A new approach to application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  • Brady, J.F., Phillips, R.J., Lester, J.C., Bossis, J.: Dynamic simulation of hydrodynamically interacting suspensions J. Fluid Mech. 195, 257–280 (1988)

    Article  MATH  Google Scholar 

  • Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  • Buryachenko V.A.: Micromechanics of Heterogeneous Materials. Springer, New York (2007)

    Book  MATH  Google Scholar 

  • Buryachenko V.A.: On the thermo-elastostatics of heterogeneous materials. I. General integral equation. Acta Mech. 213, 359–374 (2010a)

    Google Scholar 

  • Buryachenko, V.A.: On the thermo-elastostatics of heterogeneous materials. II. Analysis and generalization of some basic hypotheses and propositions. Acta Mech. 213, 359–374 (2010b)

    Google Scholar 

  • Buryachenko, V.: Solution of general integral equations of micromechanics of heterogeneous materials. J. Solids Struct. 51, 3823–3843 (2014)

    Article  Google Scholar 

  • Buryachenko V.: General integral equations of micromechanics of heterogeneous materials. Int. J. Multiscale Comput. Eng., 13, 11–53 (2015)

    Article  Google Scholar 

  • Buryachenko, V.A., Brun, M.: Iteration method in linear elasticity of random structure composites containing heterogeneities of noncanonical shape. Int. J. Solids Struct. 50, 1130–1140 (2013)

    Article  Google Scholar 

  • Buryachenko, V., Jackson, T., Amadio, G.: Modeling of random bimodal structures of composites (application to solid propellant): I. Simulation of random packs. Comput. Model. Eng. Sci. (CMES) 85(5), 379–416 (2012)

    Google Scholar 

  • Chen, H.S., Acrivos, A.: The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids Struct. 14, 349–364 (1978)

    Article  MATH  Google Scholar 

  • Chen, W., Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43, 379–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, T., Dvorak, G.J., Benveniste, Y.: Stress fields in composites reinforced by coated cylindrically orthotropic fibers Mech. Mater. 9, 7–32 ( 1990)

    Google Scholar 

  • Chen, K.H., Chen, J.T., Kao, J.H.: Regularized meshless method for antiplane shear problems with multiple inclusions. Int. J. Numer. Methods Eng. 73, 1251–1273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Cruse, T.A.: An improved boundary-integral equation method for three dimensional elastic stress analysis. Comput. Struct. 4, 741–754 (1974)

    Article  Google Scholar 

  • Dong, C.Y., Lo, S.H., Cheung, Y.K.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192, 683–696 (2003)

    Article  MATH  Google Scholar 

  • Dvorak, G.J.: Micromechanics of Composite Materials. Springer, Dordrecht (2013)

    Book  Google Scholar 

  • Durlofsky, L., Brady, J.F., Bossis, G.: Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 21–49 (1987)

    Article  MATH  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Fasshauer, G.E.: Meshfree methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, vol. 2, pp. 33–97. American Scientific Publishers, Valencia, CA (2006)

    Google Scholar 

  • Filatov, A.N., Sharov, L.V.: Integral Inequalities and the Theory of Nonlinear Oscillations. Nauka, Moscow (1979) (In Russian)

    Google Scholar 

  • Fish, J., Belytschko, T.: A First Course in Finite Elements. Wiley, Chippenham (2007)

    Book  MATH  Google Scholar 

  • Ghosh, S.: Micromechanical analysis and multi-scale modeling using the voronoi cell finite element method. Computational Mechanics and Applied Analysis. CRC, Boca Raton (2011)

    Book  MATH  Google Scholar 

  • Goldberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Goldberg, M.A. (ed.) Boundary Integral Methods: Numerical and Mathematical Aspects, pp. 103–176. Pineridge Press, Southampton/Boston (1998)

    Google Scholar 

  • Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems Numemcal Aspects of Linear Inversin. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  • Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  • Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 212–222 (1965)

    Google Scholar 

  • Hsiao, G.C., Steinbach, O., Wendland, W.L.: Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math. 125, 521–537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Jayaraman, K., Reifsnider, K.L.: Residual stresses in a composite with continuously varying Young’s modulus in the fiber/matrix interphase. J. Comput. Mater. 26, 770–791 (1992)

    Article  Google Scholar 

  • Karageorghis, A., Smyrlis, Y.-S.: Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains. J. Comput. Appl. Math. 206, 774–795 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Kröner, E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanstanten des Einkristalls. Z. Physik. 151, 504–518 (1958)

    Article  Google Scholar 

  • Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. Z. Vychisl Matimat Fiz. 4, 683–715 (1964)

    MathSciNet  MATH  Google Scholar 

  • Kushch, V.: Micromechanics of Composites: Multipole Expansion Approach. Butterworth-Heinemann, Amsterdam (2013)

    Google Scholar 

  • Lax, M.: Multiple scattering of waves II. The effective fields dense systems. Phys. Rev. 85, 621–629 (1952)

    MATH  Google Scholar 

  • Lekhnitskii, A.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holder Day, San Francisco (1963)

    MATH  Google Scholar 

  • Lin, J., Chen, W., Wang, F.: A new investigation into regularization techniques for the method of fundamental solutions. Math. Comput. Simul. 81, 1144–1152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y.L., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., Pan, E., Dumont, N.A., Frangi, A., Saez, A.: Recent advances and emerging applications of the boundary element method. Appl. Mech. Rev. 64, 031001 (38 pages) (2011)

    Google Scholar 

  • Marin, L.: A meshless method for solving the Cauchy problem in three-dimensional elastostatics. Comput. Math. Appl. 50, 73–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, N.F.M., Rebelo, M.: A meshfree method for elasticity problems with interfaces. Appl. Math. Comput. 219, 10732–10745 (2013)

    MathSciNet  MATH  Google Scholar 

  • Milton, G.W.: The theory of composites. Applied and Computational Mathematics, vol. 6. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Mossotti, O.F.: Discussione analitica sul’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’electricitá alla superficie di piú corpi elettrici disseminati in eso. Mem. Mat. Fis. Soc. Ital. Sci. Modena 24, 49–74 (1850)

    Google Scholar 

  • Mukherjee, S., Liu, Y. The boundary element method. Int. J. Comput. Methods 10, 1350037 (91 pages) (2013)

    Google Scholar 

  • Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht (1987)

    Book  MATH  Google Scholar 

  • Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, North-Holland (1993)

    MATH  Google Scholar 

  • O’Brian R.W.: A method for the calculation of the effective transport properties of suspensions of interacting particles. J. Fluid. Mech. 91, 17–39 (1979)

    Article  MathSciNet  Google Scholar 

  • Parnell, W.J.: The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics. J. Elast. 125, 231–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Parton, V.Z., Perlin, P.I.: Integral Equation Method in Elasticity. MIR, Moscow (1982)

    MATH  Google Scholar 

  • Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  • Russel, W.B., Acrivos, A.: On the effective moduli of composite materials: slender rigid inclusions at dilute concentrations. J. Appl. Math. Phys. (ZAMP), 23, 434–464 (1972)

    Google Scholar 

  • Sejnoha, M., Zeman, J.: Micromechanics in Practice. WIT, Southampton (2013)

    Google Scholar 

  • Shermergor, T.D.: The Elasticity Theory of Microheterogeneous Media. Nauka, Moscow (1977) (in Russian)

    Google Scholar 

  • Smyrlis, Y.-S.: Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Tikhonov, A.N., Arsenin, V.Y.: Methods for Solving Ill-Posed Problems. Nauka, Moscow (1986)

    MATH  Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York/Berlin (2002)

    Book  MATH  Google Scholar 

  • Torquato, S., Lado, F.: Improved bounds on the effective elastic moduli of random arrays of cylinders. J. Appl. Mech. 59, 1–6 (1992)

    Article  MathSciNet  Google Scholar 

  • Toselli, A., Widlund, O.: Domain Decomposition Methods. Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Wang, H., Yao, Z.: A new fast boundary element method for large scale analysis of mechanical properties in 3D particle-reinforced composites. Comput. Model. Eng. Sci. 4, 85–95 (2005)

    MathSciNet  MATH  Google Scholar 

  • Willis, J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25, 185–203 (1977)

    Article  MATH  Google Scholar 

  • Willis, J.R.: Variational principles and bounds for the overall properties of composites. In: Provan J.W. (ed.) Continuum Models of Disordered Systems, pp. 185–215. University of Waterloo Press, Waterloo (1978)

    Google Scholar 

  • Willis, J.R.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, Z., Kong, F., Wang, H., Wang, P.: 2D simulation of composite materials using BEM. Eng. Anal. Bound Elem. 28, 927–935 (2004)

    Article  MATH  Google Scholar 

  • You, L.H., You, X.Y., Zheng, Z.Y.: Thermomechanical analysis of elastic–plastic fibrous composites comprising an inhomogeneous interphase Comput. Mater. Sci. 36, 440–450 (2006)

    Google Scholar 

  • Young, D.L, Jane, S.J., Fan, C.M., Murugesan, K., Tsai, C.C.: The method of fundamental solutions for 2D and 3D Stokes flows. J. Comput. Phys. 211, 1–8 (2006)

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.G., Taylor, R.L.: The Finite Element Method, vols. 1 and 2, 4th edn. McGraw Hill, Berkshire (1994)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the US Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Buryachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Buryachenko, V. (2018). General Interface Integral Equations in Elasticity of Random Structure Composites. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics