Skip to main content

Inferential Frameworks for Clinical Trials

  • Living reference work entry
  • First Online:
Book cover Principles and Practice of Clinical Trials
  • 139 Accesses

Abstract

Statistical inference is the process of using data to draw conclusions about unknown quantities. Statistical inference plays a large role both in designing clinical trials and in analyzing the resulting data. The two main schools of inference, frequentist and Bayesian, differ in how they estimate and quantify uncertainty in unknown quantities. Typically, Bayesian methods have clearer interpretation at the cost of specifying additional assumptions about the unknown quantities. This chapter reviews the philosophy behind these two frameworks including concepts such as p-values, Type I and Type II errors, confidence intervals, credible intervals, prior distributions, posterior distributions, and Bayes factors. Application of these ideas to various clinical trial designs including 3 + 3, Simon’s two-stage, interim safety and efficacy monitoring, basket, umbrella, and platform drug trials is discussed. Recent developments in computing power and statistical software now enable wide access to many novel trial designs with operating characteristics superior to classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agresti A, Franklin CA (2009) Statistics: the art and science of learning from data. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Alexander BM, Cloughesy TF (2018) Platform trials arrive on time for glioblastoma. Oxford University Press US

    Google Scholar 

  • Alexander BM et al (2018) Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res 24(4):737–743

    Article  Google Scholar 

  • Barker A et al (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100

    Article  Google Scholar 

  • Bayes T (1763) LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos Trans R Soc Lond 53:370–418

    MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer Science & Business Media

    Google Scholar 

  • Berger JO (2003) Could fisher, Jeffreys and Neyman have agreed on testing? Stat Sci 18(1):1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO, Wolpert RL (1988) The likelihood principle. IMS

    Google Scholar 

  • Berry DA (2015) The brave New World of clinical cancer research: adaptive biomarker-driven trials integrating clinical practice with clinical research. Mol Oncol 9(5):951–959

    Article  Google Scholar 

  • Berry SM et al (2010) Bayesian adaptive methods for clinical trials. CRC press

    Google Scholar 

  • Berry SM et al (2015) The platform trial: an efficient strategy for evaluating multiple treatments. JAMA 313(16):1619–1620

    Article  Google Scholar 

  • Biswas S et al (2009) Bayesian clinical trials at the University of Texas MD Anderson cancer center. Clin Trials 6(3):205–216

    Article  Google Scholar 

  • Carpenter B et al (2017) Stan: a probabilistic programming language. J Stat Softw 76(1)

    Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference. Duxbury Pacific Grove, Belmont

    MATH  Google Scholar 

  • Chen F (2009) Bayesian modeling using the MCMC procedure. Proceedings of the SAS Global Forum 2008 Conference. SAS Institute Inc., Cary

    Google Scholar 

  • Gelman A et al (2013) Bayesian data analysis. Chapman and Hall/CRC

    Google Scholar 

  • Goodman SN (1999) Toward evidence-based medical statistics. 2: the Bayes factor. Ann Intern Med 130(12):1005–1013

    Article  Google Scholar 

  • Herbst RS et al (2015) Lung Master Protocol (Lung-MAP) – a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res 21(7):1514–1524

    Article  Google Scholar 

  • Hobbs BP, Landin R (2018) Bayesian basket trial design with exchangeability monitoring. Stat Med 37(25):3557–3572

    Article  MathSciNet  Google Scholar 

  • Hobbs BP et al (2018) Controlled multi-arm platform design using predictive probability. Stat Methods Med Res 27(1):65–78

    Article  MathSciNet  Google Scholar 

  • Hyman DM et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373(8):726–736

    Article  Google Scholar 

  • Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc Lond A Math Phys Sci 186(1007):453–461

    MathSciNet  MATH  Google Scholar 

  • Johnson VE (2013) Revised standards for statistical evidence. Proc Natl Acad Sci 110(48):19313–19317

    Article  MATH  Google Scholar 

  • Johnson VE, Cook JD (2009) Bayesian design of single-arm phase II clinical trials with continuous monitoring. Clin Trials 6(3):217–226

    Article  Google Scholar 

  • Jüni P et al (2001) Assessing the quality of controlled clinical trials. BMJ 323(7303):42–46

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Kim ES et al (2011) The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1(1):44–53

    Article  Google Scholar 

  • Le Tourneau C et al (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101(10):708–720

    Article  Google Scholar 

  • Lee JJ, Chu CT (2012) Bayesian clinical trials in action. Stat Med 31(25):2955–2972

    Article  MathSciNet  Google Scholar 

  • Lee JJ, Liu DD (2008) A predictive probability design for phase II cancer clinical trials. Clin Trials 5(2):93–106

    Article  Google Scholar 

  • Lin Y, Shih WJ (2001) Statistical properties of the traditional algorithm-based designs for phase I cancer clinical trials. Biostatistics 2(2):203–215

    Article  MATH  Google Scholar 

  • Little RJ (2006) Calibrated Bayes: a Bayes/frequentist roadmap. Am Stat 60(3):213–223

    Article  MathSciNet  Google Scholar 

  • Liu S, Lee JJ (2015) An overview of the design and conduct of the BATTLE trials. Chin Clin Oncol 4(3)

    Google Scholar 

  • Liu S, Yuan Y (2015) Bayesian optimal interval designs for phase I clinical trials. J R Stat Soc Ser C Appl Stat 64(3):507–523

    Article  MathSciNet  Google Scholar 

  • Mandrekar SJ et al (2015) Improving clinical trial efficiency: thinking outside the box. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting

    Google Scholar 

  • Mauri L, D’Agostino RB Sr (2017) Challenges in the design and interpretation of noninferiority trials. N Engl J Med 377(14):1357–1367

    Article  Google Scholar 

  • Mossman D, Berger JO (2001) Intervals for posttest probabilities: a comparison of 5 methods. Med Decis Mak 21(6):498–507

    Article  Google Scholar 

  • Mullard A (2015) NCI-MATCH trial pushes cancer umbrella trial paradigm. Nature Publishing Group

    Google Scholar 

  • Murray TA et al (2016) Utility-based designs for randomized comparative trials with categorical outcomes. Stat Med 35(24):4285–4305

    Article  MathSciNet  Google Scholar 

  • O’Quigley J, Chevret S (1991) Methods for dose finding studies in cancer clinical trials: a review and results of a Monte Carlo study. Stat Med 10(11):1647–1664

    Article  Google Scholar 

  • O’Quigley J et al (1990) Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics:33–48

    Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing. Austria, Vienna

    Google Scholar 

  • Redig AJ, Jänne PA (2015) Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol 33(9):975–977

    Article  Google Scholar 

  • Redman MW, Allegra CJ (2015) The master protocol concept. Seminars in oncology. Elsevier

    Google Scholar 

  • Renfro L, Sargent D (2016) Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann Oncol 28(1):34–43

    Article  Google Scholar 

  • Rosenbaum PR, Rubin DB (1984) Sensitivity of Bayes inference with data-dependent stopping rules. Am Stat 38(2):106–109

    Google Scholar 

  • Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10(1):1–10

    Article  Google Scholar 

  • Simon R (2017) Critical review of umbrella, basket, and platform designs for oncology clinical trials. Clin Pharmacol Ther 102(6):934–941

    Article  Google Scholar 

  • Simon R et al (2016) The Bayesian basket design for genomic variant-driven phase II trials. Seminars in oncology. Elsevier

    Google Scholar 

  • Skrivanek Z et al (2014) Dose-finding results in an adaptive, seamless, randomized trial of once-weekly dulaglutide combined with metformin in type 2 diabetes patients (AWARD-5). Diabetes Obes Metab 16(8):748–756

    Article  Google Scholar 

  • Smith TL et al (1996) Design and results of phase I cancer clinical trials: three-year experience at MD Anderson Cancer Center. J Clin Oncol 14(1):287–295

    Article  Google Scholar 

  • Spiegelhalter DJ et al (1996) BUGS: bayesian inference using Gibbs sampling. Version 0.5, (version ii). http://www.mrc-bsu.cam.ac.uk/bugs. 19

  • Spiegelhalter DJ et al (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley

    Google Scholar 

  • Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45(3):925–937

    Article  MathSciNet  MATH  Google Scholar 

  • Thall PF et al (1995) Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Stat Med 14(4):357–379

    Article  Google Scholar 

  • Tidwell RSS et al (2019) Bayesian clinical trials at The University of Texas MD Anderson Cancer Center: an update. Clin Trials:1740774519871471

    Google Scholar 

  • Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129–133

    Article  MathSciNet  Google Scholar 

  • Wasserstein RL et al (2019) Moving to a world beyond “p< 0.05”. Taylor & Francis

    Google Scholar 

  • Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22(158):209–212

    Article  Google Scholar 

  • Woodcock J, LaVange LM (2017) Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med 377(1):62–70

    Article  Google Scholar 

  • Zhou X et al (2008) Bayesian adaptive design for targeted therapy development in lung cancer – a step toward personalized medicine. Clin Trials 5(3):181–193

    Article  Google Scholar 

  • Zhou H et al (2017) BOP2: bayesian optimal design for phase II clinical trials with simple and complex endpoints. Stat Med 36(21):3302–3314

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jack Lee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Long, J.P., Lee, J.J. (2021). Inferential Frameworks for Clinical Trials. In: Piantadosi, S., Meinert, C.L. (eds) Principles and Practice of Clinical Trials. Springer, Cham. https://doi.org/10.1007/978-3-319-52677-5_271-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52677-5_271-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52677-5

  • Online ISBN: 978-3-319-52677-5

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics