Skip to main content

Quantum Quenches and Entanglement

  • Chapter
  • First Online:
Holographic Entanglement Entropy

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

Abstract

A simple but quite non-trivial class of non-equilibrium processes of a quantum many-body system is quantum quenches. We start with a ground state \(\mid \!\Phi _{0}\rangle\) of a certain Hamiltonian H 0. At time t = 0, we suddenly change the Hamiltonian from H 0 to a new one H. The original state \(\mid \!\Phi _{0}\rangle\) no longer stays at the ground state and starts to experience the time evolution for t > 0. Such a process is called a quantum quench. In particular, when the Hamiltonian changes homogeneously over the whole space, it is called a global quench [131, 132, 133], while if the change is localized in a certain small region, it is called a local quench [134].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion of the limitations inherent in this approximation, we refer the reader to [137, 138, 139].

  2. 2.

    This illustrates an important fact: while the overall spatial volume inside a black hole shrinks to zero, areas of spatial sections actually continue to grow. This has been conjectured to be related to the growth of complexity of the state [157].

References

  1. V.E. Hubeny, M. Rangamani, T. Takayanagi, A Covariant holographic entanglement entropy proposal. J. High Energy Phys. 0707, 062 (2007). arXiv:0705.0016 [hep-th]

    Google Scholar 

  2. R. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  3. V.E. Hubeny, H. Maxfield, M. Rangamani, E. Tonni, Holographic entanglement plateaux. J. High Energy Phys. 1308, 092 (2013). arXiv:1306.4004

    Google Scholar 

  4. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT. J. High Energy Phys. 07, 093 (2012). arXiv:1203.1044 [hep-th]

    Google Scholar 

  5. P. Calabrese, J. Cardy, Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 04, 10 (2005). cond-mat/0503393. http://arxiv.org/abs/cond-mat/0503393

  6. P. Calabrese, J. Cardy, Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). cond-mat/0601225. http://arxiv.org/abs/cond-mat/0601225

  7. P. Calabrese, J. Cardy, Quantum quenches in extended systems. J. Stat. Mech. 6, 8 (2007). arXiv:0704.1880 [cond-mat.stat-mech]

    Google Scholar 

  8. P. Calabrese, J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach. J. Stat. Mech. 10, 4 (2007). arXiv:0708.3750 [cond-mat.stat-mech]

    Google Scholar 

  9. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    Article  ADS  Google Scholar 

  10. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994). cond-mat/9403051

    Google Scholar 

  11. S.R. Das, D.A. Galante, R.C. Myers, Smooth and fast versus instantaneous quenches in quantum field theory. J. High Energy Phys. 08, 073 (2015). arXiv:1505.05224 [hep-th]

    Google Scholar 

  12. J. Cardy, Quantum quenches to a critical point in one dimension: some further results (2015). arXiv:1507.07266 [cond-mat.stat-mech]

    Google Scholar 

  13. G. Mandal, R. Sinha, N. Sorokhaibam, Thermalization with chemical potentials, and higher spin black holes. J. High Energy Phys. 08, 013 (2015). arXiv:1501.04580 [hep-th]

    Google Scholar 

  14. T. Takayanagi, T. Ugajin, Measuring black hole formations by entanglement entropy via coarse-graining. J. High Energy Phys. 1011, 054 (2010). arXiv:1008.3439 [hep-th]

    Google Scholar 

  15. T. Hartman, J. Maldacena, Time evolution of entanglement entropy from black hole interiors. J. High Energy Phys. 1305, 014 (2013). arXiv:1303.1080 [hep-th]

    Google Scholar 

  16. N. Ishibashi, The boundary and crosscap states in conformal field theories. Mod. Phys. Lett. A4, 251 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B324, 581 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Mollabashi, M. Nozaki, S. Ryu, T. Takayanagi, Holographic geometry of cMERA for quantum quenches and finite temperature. J. High Energy Phys. 1403, 098 (2014). arXiv:1311.6095 [hep-th]

    Google Scholar 

  19. L.A. Pando Zayas, N. Quiroz, Left-right entanglement entropy of boundary states. J. High Energy Phys. 1501, 110 (2015). arXiv:1407.7057 [hep-th]

    Google Scholar 

  20. M. Miyaji, S. Ryu, T. Takayanagi, X. Wen, Boundary states as holographic duals of trivial spacetimes. J. High Energy Phys. 05, 152 (2015). arXiv:1412.6226 [hep-th]

    Google Scholar 

  21. C.T. Asplund, A. Bernamonti, F. Galli, T. Hartman, Entanglement scrambling in 2D conformal field theory. J. High Energy Phys. 09, 110 (2015). arXiv:1506.03772 [hep-th]

    Google Scholar 

  22. L. Fidkowski, V. Hubeny, M. Kleban, S. Shenker, The black hole singularity in AdS / CFT. J. High Energy Phys. 02, 014 (2004). arXiv:hep-th/0306170 [hep-th]

    Google Scholar 

  23. J.M. Maldacena, Eternal black holes in anti-de Sitter. J. High Energy Phys. 0304, 021 (2003). arXiv:hep-th/0106112 [hep-th]

    Google Scholar 

  24. J. Abajo-Arrastia, J. Aparicio, E. Lopez, Holographic evolution of entanglement entropy. J. High Energy Phys. 1011, 149 (2010). arXiv:1006.4090 [hep-th]

    Google Scholar 

  25. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, et al., Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011). arXiv:1012.4753 [hep-th]

    Google Scholar 

  26. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, et al., Holographic thermalization. Phys. Rev. D84, 026010 (2011). arXiv:1103.2683 [hep-th]

    Google Scholar 

  27. V.E. Hubeny, H. Maxfield, Holographic probes of collapsing black holes. J. High Energy Phys. 03, 097 (2014). arXiv:1312.6887 [hep-th]

    Google Scholar 

  28. V.E. Hubeny, Precursors see inside black holes. Int. J. Mod. Phys. D12, 1693–1698 (2003). arXiv:hep-th/0208047 [hep-th]

    Google Scholar 

  29. T. Takayanagi, Holographic dual of BCFT. Phys. Rev. Lett. 107, 101602 (2011). arXiv:1105.5165 [hep-th]

    Google Scholar 

  30. H. Liu, S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization. Phys. Rev. Lett. 112, 011601 (2014). arXiv:1305.7244 [hep-th]

    Google Scholar 

  31. L. Susskind, Computational complexity and black hole horizons. Fortschr. Phys. 64, 24–43 (2016). arXiv:1403.5695 [hep-th]

    Google Scholar 

  32. H. Liu, S.J. Suh, Entanglement growth during thermalization in holographic systems. Phys. Rev. D89 (6), 066012 (2014). arXiv:1311.1200 [hep-th]

    Google Scholar 

  33. V.E. Hubeny, M. Rangamani, E. Tonni, Thermalization of causal holographic information. J. High Energy Phys. 05, 136 (2013). arXiv:1302.0853 [hep-th]

    Google Scholar 

  34. T. Hartman, N. Afkhami-Jeddi, Speed limits for entanglement (2015). arXiv:1512.02695 [hep-th]

    Google Scholar 

  35. H. Casini, H. Liu, M. Mezei, Spread of entanglement and causality. J. High Energy Phys. 07, 077 (2016). arXiv:1509.05044 [hep-th]

    Google Scholar 

  36. S.H. Shenker, D. Stanford, Black holes and the butterfly effect. J. High Energy Phys. 03, 067 (2014). arXiv:1306.0622 [hep-th]

    Google Scholar 

  37. E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). Quantum Quenches and Entanglement. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_7

Download citation

Publish with us

Policies and ethics