Skip to main content

Properties of Holographic Entanglement Entropy

  • Chapter
  • First Online:
Holographic Entanglement Entropy

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

Abstract

The holographic RT and HRT prescriptions allow us to explore general properties of entanglement entropy in a class of QFTs. We will first examine the consistency of holographic entanglement entropy with expectations that follow from the basic definition as detailed in Sect. 2.4 We will also see that there are certain features that are peculiar to holographic systems, in part owing to the fact that we are working in the large c eff limit. We reiterate that the holographic entanglement entropy prescriptions are geared to capturing the leading semiclassical part of entanglement in terms of geometric data. Subleading corrections require ascertaining the bulk entanglement, as discussed in the previous section. All in all, this leads to some unexpected features, which at first sight seem unconventional, but are easily understood once one fully appreciates the implications of the limit c eff ≫ 1 being effectively a semiclassical regime of the QFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We now set AdS = 1 to avoid cluttering up the notation. It can be reinstated through dimensional analysis.

  2. 2.

    With minor changes, we can make similar observations for the polar-cap regions of \(\mathbf{S}^{d-1} \times \mathbb{R}\).

  3. 3.

    This combination of entropies is also what appears in the computation of topological entanglement entropy for 2 + 1-dimensional theories, as originally described in [5].

  4. 4.

    The corresponding question for classical entropies has been successfully addressed in [127, 128], while that for quantum entanglement is as yet undetermined, though partial progress has been made in [129, 130].

References

  1. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). arXiv:hep-th/0510092 [hep-th]

    Google Scholar 

  2. H. Liu, M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom. J. High Energy Phys. 04, 162 (2013). arXiv:1202.2070 [hep-th]

    Google Scholar 

  3. E.H. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  ADS  Google Scholar 

  4. A.C. Wall, Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy. Classical Quantum Gravity 31 (22), 225007 (2014). arXiv:1211.3494 [hep-th]

    Google Scholar 

  5. H. Casini, M. Huerta, R.C. Myers, Towards a derivation of holographic entanglement entropy. J. High Energy Phys. 1105, 036 (2011). arXiv:1102.0440 [hep-th]

    Google Scholar 

  6. T. Barrella, X. Dong, S.A. Hartnoll, V.L. Martin, Holographic entanglement beyond classical gravity. J. High Energy Phys. 1309, 109 (2013). arXiv:1306.4682 [hep-th]

    Google Scholar 

  7. C. Fefferman, C.R. Graham, Conformal Invariants. Ast\(\acute{e}\) risque (1985), p. 95

    Google Scholar 

  8. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). arXiv:hep-th/0002230 [hep-th]

    Google Scholar 

  9. M. Henningson, K. Skenderis, The holographic Weyl anomaly. J. High Energy Phys. 07, 023 (1998). arXiv:hep-th/9806087 [hep-th]

    Google Scholar 

  10. V. Balasubramanian, P. Kraus, A Stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999). arXiv:hep-th/9902121 [hep-th]

    Google Scholar 

  11. V.E. Hubeny, H. Maxfield, M. Rangamani, E. Tonni, Holographic entanglement plateaux. J. High Energy Phys. 1308, 092 (2013). arXiv:1306.4004

    Google Scholar 

  12. K. Brakke, The surface evolver. Exp. Math. 1 (2), 141 (1992)

    Google Scholar 

  13. P. Fonda, L. Giomi, A. Salvio, E. Tonni, On shape dependence of holographic mutual information in AdS4. J. High Energy Phys. 02, 005 (2015). arXiv:1411.3608 [hep-th]

    Google Scholar 

  14. P. Fonda, D. Seminara, E. Tonni, On shape dependence of holographic entanglement entropy in AdS4/CFT3. J. High Energy Phys. 12, 037 (2015). arXiv:1510.03664 [hep-th]

    Google Scholar 

  15. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    Article  ADS  MATH  Google Scholar 

  16. V.E. Hubeny, M. Rangamani, Causal holographic information. J. High Energy Phys. 1206, 114 (2012). arXiv:1204.1698 [hep-th]

    Google Scholar 

  17. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT. J. High Energy Phys. 07, 093 (2012). arXiv:1203.1044 [hep-th]

    Google Scholar 

  18. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). arXiv:hep-th/9803131 [hep-th]

    Google Scholar 

  19. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  Google Scholar 

  20. V.E. Hubeny, M. Rangamani, E. Tonni, Global properties of causal wedges in asymptotically AdS spacetimes. J. High Energy Phys. 1310, 059 (2013). arXiv:1306.4324 [hep-th]

    Google Scholar 

  21. J.J. Bisognano, E.H. Wichmann, On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J.J. Bisognano, E.H. Wichmann, On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D14, 870 (1976)

    ADS  Google Scholar 

  24. I.R. Klebanov, S.S. Pufu, S. Sachdev, B.R. Safdi, Renyi entropies for free field theories. arXiv:1111.6290 [hep-th]

    Google Scholar 

  25. L.-Y. Hung, R.C. Myers, M. Smolkin, A. Yale, Holographic calculations of Renyi entropy. J. High Energy Phys. 12, 047 (2011). arXiv:1110.1084 [hep-th]

    Google Scholar 

  26. R. Emparan, AdS / CFT duals of topological black holes and the entropy of zero energy states. J. High Energy Phys. 06, 036 (1999). arXiv:hep-th/9906040 [hep-th]

    Google Scholar 

  27. C.R. Graham, E. Witten, Conformal anomaly of submanifold observables in AdS / CFT correspondence. Nucl. Phys. B546, 52–64 (1999). arXiv:hep-th/9901021 [hep-th]

    Google Scholar 

  28. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry. Phys. Lett. B665, 305–309 (2008). arXiv:0802.3117 [hep-th]

    Google Scholar 

  29. M. Headrick, General properties of holographic entanglement entropy. J. High Energy Phys. 1403, 085 (2014). arXiv:1312.6717 [hep-th]

    Google Scholar 

  30. T. Hartman, Entanglement entropy at large central charge (2013). arXiv:1303.6955 [hep-th]

    Google Scholar 

  31. M. Headrick, T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D76, 106013 (2007). arXiv:0704.3719 [hep-th]

    Google Scholar 

  32. S.A. Gentle, M. Rangamani, Holographic entanglement and causal information in coherent states. J. High Energy Phys. 01, 120 (2014). arXiv:1311.0015 [hep-th]

    Google Scholar 

  33. P. Hayden, M. Headrick, A. Maloney, Holographic mutual information is monogamous. arXiv:1107.2940 [hep-th]

    Google Scholar 

  34. M. Rangamani, M. Rota, Entanglement structures in qubit systems. J. Phys. A48 (38), 385301 (2015). arXiv:1505.03696 [hep-th]

    Google Scholar 

  35. N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully, M. Walter, The holographic entropy cone. J. High Energy Phys. 09, 130 (2015). arXiv:1505.07839 [hep-th]

    Google Scholar 

  36. Z. Zhang, R.W. Yeung, On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 44 (4), 1440–1452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Matus, Infinitely many information inequalities, in IEEE International Symposium on Information Theory, 2007. ISIT 2007 (IEEE, Nice, 2007), pp. 41–44

    Google Scholar 

  38. J. Cadney, N. Linden, A. Winter, Infinitely many constrained inequalities for the von neumann entropy. IEEE Trans. Inf. Theory 58 (6), 3657–3663 (2012)

    Article  MathSciNet  Google Scholar 

  39. N. Linden, F. Matúš, M.B. Ruskai, A. Winter, The quantum entropy cone of stabiliser states (2013). 1302.5453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). Properties of Holographic Entanglement Entropy. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_6

Download citation

Publish with us

Policies and ethics