Skip to main content

Understanding on the Role of Rare Earth Elements in Activation of \( \left\langle {\text{c}} + {\text{a}} \right\rangle \) Slip in Magnesium: An Atomistic Approach

  • Conference paper
  • First Online:
Magnesium Technology 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5501 Accesses

Abstract

The effect of Li addition on the slip behavior of Mg has been investigated using a molecular dynamics simulation. Based on a previous study on Mg–Y alloys concluding that a reduction of the anisotropy in critical resolved shear stress (CRSS) among difference slip systems activates the \( \left\langle {\text{c}} + {\text{a}} \right\rangle \) slip, the effect of Li, an element known to improve the room temperature ductility of Mg is chosen as an alloying element to examine the robustness of the above-mentioned conclusion. It is found that Li increases the CRSS of the basal slip more than that of the non-basal slip, reducing the difference in the CRSS among different slip systems. The reduced anisotropy in CRSS is believed to activate the non-basal \( \left\langle {\text{c}} + {\text{a}} \right\rangle \) slip and eventually improve ductility in Mg–Li alloys. This understanding can be further extended into an alloy design of more cost-effective Mg alloys with improved room temperature formability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Zhang, S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60(5), 945–972 (2012)

    Article  Google Scholar 

  2. G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62, 307 (1938)

    Google Scholar 

  3. S. Sandlobes et al., The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 60, 3011–3021 (2012)

    Article  Google Scholar 

  4. S.R. Agnew, M.H. Yoo, C.N. Tome, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001)

    Article  Google Scholar 

  5. F. Kang et al., The activation of <c + a> non-basal slip in Magnesium alloys. J. Mater. Sci. 47, 7854–7859 (2012)

    Article  Google Scholar 

  6. Z. Pei et al., Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys. New J. Phys. 15, 043020 (2013)

    Article  Google Scholar 

  7. W.Y. Wang et al., Effects of Alloying elements on stacking fault energies and electronic structures of binary Mg alloys: a first-principles study. Mater. Res. Lett. 2(1), 29–36 (2014)

    Article  Google Scholar 

  8. S. Sandlobes et al., On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 59, 429–439 (2011)

    Article  Google Scholar 

  9. K.-H. Kim, J.B. Jeon, B.-J. Lee, Role of yttrium in activation of <c + a> slip in magnesium: an atomistic approach. Scr. Mater. 108, 104–108 (2015)

    Article  Google Scholar 

  10. T. Al-Samman, Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy. Acta Mater. 57, 2229–2242 (2009)

    Article  Google Scholar 

  11. J. Han, X.M. Su, Z.-H. Jin, Y.T. Zhu, Basal-plane stacking-fault energies of Mg: a first-principles study of Li- and Al-alloying effects. Scr. Mater. 64, 693–696 (2011)

    Article  Google Scholar 

  12. M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Generalized stacking fault energy in magnesium alloys: density functional theory calculation. Scr. Mater. 66, 219–222 (2012)

    Article  Google Scholar 

  13. Y.-M. Kim, I.-H. Jung, N.J. Kim, B.-J. Lee, Atomistic modeling of pure Li and Mg–Li system. Modell. Simul. Mater. Sci. Eng. 20, 035005 (2012)

    Article  Google Scholar 

  14. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727–2742 (1992)

    Article  Google Scholar 

  15. B.-J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(13), 8564–8567 (2000)

    Article  Google Scholar 

  16. Y.-M. Kim, N.J. Kim, B.-J. Lee, Atomistic modeling of pure Mg and Mg-Al systems. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 650–657 (2009)

    Article  Google Scholar 

  17. K.-H. Kim, J.B. Jeon, B.-J. Lee, Modified embedded-atom method interatomic potentials for Mg–X (X=Y, Sn, Ca) binary systems. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 48, 27–34 (2015)

    Article  Google Scholar 

  18. Y.N. Osetsky, D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals. Modell. Simul. Mater. Sci. Eng. 11(4), 427–446 (2003)

    Google Scholar 

  19. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  20. S.R. Agnew, J.A. Horton, M.H. Yoo, Transmission electron microscopy investigation of <c + a> dislocations in Mg and α–solid solution Mg-Li alloys. Metall. Mater. Trans. A 33(A), 851–858 (2002)

    Google Scholar 

  21. S.R. Agnew, O. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161–1193 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Jang, HS., Kim, KH., Kim, N.J., Lee, BJ. (2017). Understanding on the Role of Rare Earth Elements in Activation of \( \left\langle {\text{c}} + {\text{a}} \right\rangle \) Slip in Magnesium: An Atomistic Approach. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_67

Download citation

Publish with us

Policies and ethics