Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 122))

Abstract

Large scene rendering causes many issues, including the algorithmic support and software/hardware implementation. The Level Of Details (LOD) architecture is the basis of terrain and vegetation rendering. The texturing techniques are strongly connected with a category of the LOD algorithm. Multi-texturing, clipmaps, and virtual texturing are the main methods, applying in the LOD algorithms. The classification of the forest rendering techniques demonstrates a great variety of methods that were developed actively since 1990s. The realistic leaves and grass rendering in the nearest LOD are the special issues to that ought to be given a lot of attention respect to the current situation in computer graphics. The realistic lighting and shadow mapping technique are also in the focus of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duchaineau M, Wolinsky M, Sigeti DE, Miller MC, Aldrich C, Mineev-Weinstein MB (1997) ROAMing terrain: real-time optimally adapting meshes. 8th conference on visualization VIS 1997, pp 81–88

    Google Scholar 

  2. Rocchini C, Cignoni P, Montani C, Scopigno R (1999) Multiple textures stitching and blending on 3D objects. 10th Eurographics workshop on rendering EGWR 1999, pp 119–130

    Google Scholar 

  3. Tanner CC, Migdal CJ, Jones MT (1998) The clipmap: a virtual mipmap. 25th annual conference on computer graphics and interactive techniques SIGGRAPH 1998, pp 151–158

    Google Scholar 

  4. Losasso F, Hoppe H (2004) Geometry clipmaps: terrain rendering using nested regular grids. ACM Trans Graph SIGGRAPH 23(3):769–776

    Article  Google Scholar 

  5. de Boer WH (2000) Fast terrain rendering using geometrical MipMapping. http://www.flipcode.com/archives/article_geomipmaps.pdf. Accessed 10 Jan 2016

  6. Reeves WT, Blau R (1985) Approximate and probabilistic algorithms for shading and rendering structured particle systems. Comput Graph 19:313–322

    Article  Google Scholar 

  7. Decoret X, Durand F, Sillion FX, Dorsey J (2003) Billboard clouds for extreme model simplification. ACM Trans Graph 22(3):689–696

    Article  Google Scholar 

  8. Cohen F, Decaudin P, Neyret F (2004) GPU-based lighting and shadowing of complex natural scenes. ACM SIGGRAPH 2004 posters, p 91

    Google Scholar 

  9. Decaudin P, Neyret F (2004) Rendering forest scenes in real-time. Eurographics symposium on rendering, rendering techniques 2004:93–102

    Google Scholar 

  10. Decaudin P, Neyret F (2009) Volumetric billboards. Comput Graph Forum 28:2079–2089

    Google Scholar 

  11. Zhang H, Hua W, Wang Q, Bao H (2006) Fast display of large-scale forest with fidelity. Comput Anim Virtual Worlds 17:83–97

    Article  Google Scholar 

  12. Liu F, Hua W, Bao H (2010) GPU-based dynamic quad stream for forest rendering. Sci China Inf Sci 53:1539–1545

    Article  Google Scholar 

  13. Gumbau J, Chover M, Remolar I, Rebollo C (2011) View-dependent pruning for real-time rendering of trees. Comput Graph 35:364–374

    Article  Google Scholar 

  14. Bao G, Li H, Zhang X, Che W, Jaeger M (2011) Realistic real-time rendering for large-scale forest scenes. IEEE Int Symp VR Innov ISVRI 2011:217–223

    Article  Google Scholar 

  15. Deng Q, Zhang X, Gay S, Lei X (2007) Continuous LOD model of coniferous foliage. Int J Virtual Reality 6:77–84

    Google Scholar 

  16. Hoppe H (1996) Progressive meshes. 23rd annual conference on computer graphics and interactive techniques SIGGRAPH 1996, pp 99–108

    Google Scholar 

  17. Kim J, Lee S, Kobbelt L (2004) View-dependent streaming of progressive meshes. Shape Model Int SMI 2004:209–220

    Google Scholar 

  18. Maglo A, Lee H, Lavoue G, Mouton C, Hudelot C, Dupont F (2010) Remote scientific visualization of progressive 3D meshes with x3d. 15th international conference on web 3D technology web3D 2010, pp 109–16

    Google Scholar 

  19. Shopf J, Barczak J, Oat C, Tatarchuk N (2008) March of the froblins: simulation and rendering massive crowds of intelligent and detailed creatures on GPU. ACM SIGGRAPH 2008 classes SIGGRAPH 2008, pp 52–101

    Google Scholar 

  20. Qin X, Nakamae E, Tadamura K, Nagai Y (2003) Fast photo-realistic rendering of trees in daylight. Comput Graph Forum 22(3):243–252

    Article  Google Scholar 

  21. Behrendt S, Colditz C, Franzke O, Kopf J, Deussen O (2005) Realistic real-time rendering of landscapes using billboard clouds. Eurographics 24(3):507–516

    Google Scholar 

  22. Scherzer D, Wimmer M, Purgathofer W (2011) A Survey of real-time hard shadow mapping methods. Comput Graph Forum 30(1):169–186

    Article  Google Scholar 

  23. Stamminger M, Drettakis G (2002) Perspective shadow maps. 29th annual conference on computer graphics and interaction techniques, SIGGRAPH 2002, pp 557–562

    Google Scholar 

  24. Wimmer M, Scherzer D, Purgathofer W (2004) Light space perspective shadow maps. In: Keller A, Jensen HW (eds) Rendering techniques 2004, Eurographics symposium on rendering 2004, pp 143–151

    Google Scholar 

  25. Martin T, Tan TS (2004) Anti-aliasing and continuity with trapezoidal shadow maps. 15th Eurographics Workshop on rendering techniques EGSR 2004, pp 153–160

    Google Scholar 

  26. Lloyd DB, Govindaraju NK, Quammen C, Molnar SE, Manocha D (2008) Logarithmic perspective shadow maps. ACM Trans Graph 27(4):1–39

    Article  Google Scholar 

  27. Zhang F, Sun H, Xu L, Lee K (2008) Hardware-accelerated parallel-split shadow maps. Int J Image Graph 8:223–241

    Article  Google Scholar 

  28. Tadamura K, Qin X, Jiao G, Nakamae E (1999) Rendering optimal solar shadows using plural sunlight depth buffers. IEEE Int Conf Comput Graph CGI 1999:166–173

    Article  MATH  Google Scholar 

  29. Lloyd B, Tuft D, Yoon S, Manocha D (2006) Warping and partitioning for low error shadow maps. Eurographics Symp Rendering 2006:215–226

    Google Scholar 

  30. Engel W (2007) Cascaded shadow maps. In: Engel W (ed) ShaderX5: advanced rendering techniques, Charles River Media

    Google Scholar 

  31. Franzke O, Deussen O (2003) Accurate graphical representation of plant leaves. In: Hu BG, Jaeger M (Eds) Plant growth modelling and applications PMA 2003, pp 1–16

    Google Scholar 

  32. Vogelmann C (1993) Plant tissue optics. Ann Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  33. Tucker C, Garratt M (1976) Leaf optical system modeled as a stochastic process. Appl Opt 16(3):635–642

    Article  Google Scholar 

  34. Yamada N, Fujimura S (1991) Nondestructive measurement of chlorophyll pigment content in plant leaves from three color reflectance and transmittance. Appl Opt 30:3964–3973

    Article  Google Scholar 

  35. Haberlandt G (1914) Physiological plant anatomy. Nature 93(2332):477

    Google Scholar 

  36. Allen W, Gausmann H, Richardson A (1973) Willstatter-Stoll theory of leaf reflectans evaluation by ray tracing. Appl Opt 12:2448–2453

    Article  Google Scholar 

  37. Kumar R, Silva L (1972) Light ray tracing through a leaf cross section. Appl Opt 12:2950–2954

    Article  Google Scholar 

  38. Govaerts Y, Jaquemoud S, Ustin MVS (1996) Three dimensional radiation transfer modeling in a dicotyledon leaf. Appl Opt 35:6585–6598

    Article  Google Scholar 

  39. Baranoski G, Rokne J (1997) An algorithmic reflectance and transmittance model for plant tissue. Comput Graph Forum 16(3):141–150

    Article  Google Scholar 

  40. Williams L (1983) Pyramidal parametrics. Comput Graph 17(3):1–11

    Article  Google Scholar 

  41. Ewins JP, Waller MD, White M, Lister PF (1998) MIP map level selection for texture mapping. IEEE Trans Vis Comput Graph 4(4):317–329

    Article  Google Scholar 

  42. Debevec PE, Taylor CJ, Malik J (1996) Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH 1996, pp 11–20

    Google Scholar 

  43. Debevec P, Yu Y, Borshukov G (1998) Efficient view-dependent image-based rendering with projective texture-mapping. In: Drettakis G, Max N (eds) Rendering techniques 1998. Springer, Wien

    Google Scholar 

  44. Asirvatham A, Hoppe H (2005) Terrain rendering using GPU-based geometry clipmaps. In: Pharr M, Fernando R (eds) GPU Gems, vol 2. Addison-Wesley, USA, pp 27–46

    Google Scholar 

  45. Kobbelt (1996) Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput Graph Forum 15(3):409–420

    Article  Google Scholar 

  46. Dick C, Krüger J, Westermann R (2009) GPU ray-casting for scalable terrain rendering. Eurographics 50:43–50

    Google Scholar 

  47. Dick C, Krüger J, Westermann R (2010) GPU-aware hybrid terrain rendering. IADIS international conference on computer graphics, visualization, computer vision and image processing CGVCVIP 2010, pp 3–10

    Google Scholar 

  48. Clasen M, Hege H-C (2006) Terrain rendering using spherical clipmaps. In: Santos BS, Thomas Ertl T, Joy K (Eds) Eurographics/IEEE-VGTC symposium on visualization EUROVIS 2006, pp 91–98

    Google Scholar 

  49. Feldmann D, Steinicke F, Hinrichs KH (2011) Flexible clipmaps for managing growing textures. International conference on computer graphics theory and applications VISIGRAPP 2011, pp 173–180

    Google Scholar 

  50. Taibo J, Seoane A, Hernández L (2009) Dynamic virtual textures. J WSCG 17(1–3):25–32

    Google Scholar 

  51. Chen B, Swan JE II, Kuo E, Kaufman A (1999) LOD-sprite technique for accelerated terrain rendering. Visualization 1999:291–298

    Article  Google Scholar 

  52. Meyer A, Neyret F, Poulin P (2001) Interactive rendering of trees with shading and shadows. 12th Eurographics conference on rendering EGWR 2001, pp 183–196

    Google Scholar 

  53. Dischler J-M (1998) Efficiently rendering macrogeometric surface structures using bi-directional texture functions. In: Drettakis G, Max N (eds) Rendering techniques 1998. Springer, Wien

    Google Scholar 

  54. Max N, Deussen O, Keating B (1999) Hierarchical image-based rendering using texture mapping hardware. In: Lischinski D, Larson GW (eds) Rendering Techniques 1999. Springer, Wien

    Google Scholar 

  55. Max NL (1998) Horizon mapping: shadows for bump-mapped surfaces. Visual Comput 4(2):109–117

    Article  Google Scholar 

  56. Schaufler G, Dorsey J, Decoret X, Sillion FX (2000) Conservative volumetric visibility with occluder fusion. 27th annual conference on computer graphics and interactive techniques SIGGRAPH 2000, pp 229–238

    Google Scholar 

  57. Boulanger K, Pattanaik S, Bouatouch K (2006) Rendering grass in real-time with dynamic light sources and shadows. Research report PI 1809

    Google Scholar 

  58. Hanrahan P, Krueger W (1993) Reflection from layered surfaces due to subsurface scattering. 20th annual conference on computer graphics and interactive techniques SIGGRAPH 1993, pp 165–174

    Google Scholar 

  59. Pharr M, Hanrahan P (2000) Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. 27th annual conference on computer graphics and interactive techniques SIGGRAPH 2000, pp 75–84

    Google Scholar 

  60. Jensen H, Marschner S, Levoy M, Hanrahan P (2001) A practical model for subsurface light transport. 28th annual conference on computer graphics and interactive techniques SIGGRAPH 2001, pp 511–518

    Google Scholar 

  61. Wang L, Wang W, Dorsey J, Yang X, Guo B, Shum H-Y (2005) Real-time rendering of plant leaves. ACM Trans Graph ACM SIGGRAPH’2005 24(3):712–719

    Google Scholar 

  62. Justice CO, Holben BN (1979) Examination of Lambertian and Non-Lambertian models for simulating the topographic effect on remotely-sensed data. Goddard Space Flught Cneter, Greenbelt NASA TM 85290

    Google Scholar 

  63. Unity|Documentation. http://docs.unity3d.com/Manual/Shaders.html. Accessed 12 Jan 2016

  64. Unity|Documentation. http://docs.unity3d.com/Manual/shader-Performance.html. Accessed 13 Jan 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhmi C. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Favorskaya, M.N., Jain, L.C. (2017). Large Scene Rendering. In: Handbook on Advances in Remote Sensing and Geographic Information Systems. Intelligent Systems Reference Library, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-52308-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52308-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52306-4

  • Online ISBN: 978-3-319-52308-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics